scholarly journals Phylodynamic Pattern of Genetic Clusters, Paradigm Shift on Spatio-temporal Distribution of Clades, and Impact of Spike Glycoprotein Mutations of SARS-CoV-2 Isolates from India

2021 ◽  
Author(s):  
Siva Subramanian ◽  
Satish Kitambi

Background: The COVID-19 pandemic is associated with high morbidity and mortality, with the emergence of numerous variants. The dynamics of SARS-CoV-2 with respect to clade distribution is uneven, unpredictable and fast changing. Aims: Retrieving the complete genomes of SARS-CoV-2 from India and subjecting them to analysis on phylogenetic clade diversity, Spike (S) protein mutations and their functional consequences such as immune escape features and impact on infectivity. Methods: Whole genome of SARS-CoV-2 isolates (n=4,326) deposited from India during the period from January 2020 to December 2020 is retrieved from GISAID and various analyses performed using in silico tools. Results: Notable clade dynamicity is observed indicating the emergence of diverse SARS-CoV-2 variants across the country. GR clade is predominant over the other clades and the distribution pattern of clades is uneven. D614G is the commonest and predominant mutation found among the S-protein followed by L54F. Mutation score prediction analyses reveal that there are several mutations in S-protein including the RBD and NTD regions that can influence the virulence of virus. Besides, mutations having immune escape features as well as impacting the immunogenicity and virulence through changes in the glycosylation patterns are identified. Conclusions: The study has revealed emergence of variants with shifting of clade dynamics within a year in India. It is shown uneven distribution of clades across the nation requiring timely deposition of SARS-CoV-2 sequences. Functional evaluation of mutations in S-protein reveals their significance in virulence, immune escape features and disease severity besides impacting therapeutics and prophylaxis.

2021 ◽  
Vol 13 (4) ◽  
pp. 164
Author(s):  
SatishSrinivas Kitambi ◽  
Srinivasan Sivasubramanian ◽  
Vidya Gopalan ◽  
Kiruba Ramesh ◽  
Padmapriya Padmanabhan ◽  
...  

2013 ◽  
Vol 38 (7) ◽  
pp. 1286-1294 ◽  
Author(s):  
Zong-Xin LI ◽  
Yuan-Quan CHEN ◽  
Qing-Cheng WANG ◽  
Kai-Chang LIU ◽  
Wang-Sheng GAO ◽  
...  

2019 ◽  
Author(s):  
Rudra Mohan Pradhan ◽  
◽  
Karrie A. Weber ◽  
Karrie A. Weber ◽  
Daniel Snow ◽  
...  

2021 ◽  
Vol 13 (5) ◽  
pp. 892
Author(s):  
Xiaomei Li ◽  
Pinhua Xie ◽  
Ang Li ◽  
Jin Xu ◽  
Zhaokun Hu ◽  
...  

This paper studied the method for converting the aerosol extinction to the mass concentration of particulate matter (PM) and obtained the spatio-temporal distribution and transportation of aerosol, nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) based on multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations in Dalian (38.85°N, 121.36°E), Qingdao (36.35°N, 120.69°E), and Shanghai (31.60°N, 121.80°E) from 2019 to 2020. The PM2.5 measured by the in situ instrument and the PM2.5 simulated by the conversion formula showed a good correlation. The correlation coefficients R were 0.93 (Dalian), 0.90 (Qingdao), and 0.88 (Shanghai). A regular seasonality of the three trace gases is found, but not for aerosols. Considerable amplitudes in the weekly cycles were determined for NO2 and aerosols, but not for SO2 and HCHO. The aerosol profiles were nearly Gaussian, and the shapes of the trace gas profiles were nearly exponential, except for SO2 in Shanghai and HCHO in Qingdao. PM2.5 presented the largest transport flux, followed by NO2 and SO2. The main transport flux was the output flux from inland to sea in spring and winter. The MAX-DOAS and the Copernicus Atmosphere Monitoring Service (CAMS) models’ results were compared. The overestimation of NO2 and SO2 by CAMS is due to its overestimation of near-surface gas volume mixing ratios.


Sign in / Sign up

Export Citation Format

Share Document