scholarly journals Experimental evidence for the impact of soil viruses on carbon cycling during surface plant litter decomposition

2021 ◽  
Author(s):  
Michaeline BN Albright ◽  
La Verne Gallegos-Graves ◽  
Kelli L. Feeser ◽  
Kyana Montoya ◽  
Joanne B Emerson ◽  
...  

To date, the potential impact of viral communities on biogeochemical cycles in soil has largely been inferred from indirect evidence, such as virus-driven changes in microbial abundances, viral auxiliary metabolic genes, and correlations with soil physiochemical properties. To more directly test the impact of soil viruses on carbon cycling during plant litter decomposition, we added concentrated viral community suspensions to complex litter decomposer communities in 40-day microcosm experiments. Microbial communities from two New Mexico alpine soils, Pajarito (PJ) and Santa Fe (SF), were inoculated onto grass litter on sand, and three treatments were applied in triplicate to each set of microcosms: addition of buffer (no added virus), addition of live virus (+virus), or killed virus (+killed-virus) fractions extracted from the same soil. Significant differences in respiration were observed between the +virus and +killed-virus treatments in the PJ, but not the SF microcosms. Bacterial and fungal community composition differed significantly by treatment in both PJ and SF microcosms. Combining data across both soils, viral addition altered links between bacterial and fungal diversity, dissolved organic carbon and total nitrogen. Overall, we demonstrate that increasing viral pressure in complex microbial communities can impact terrestrial biogeochemical cycling but is context-dependent.

2014 ◽  
Vol 67 (4) ◽  
pp. 601-616 ◽  
Author(s):  
Ana C. Freitas ◽  
Dina Rodrigues ◽  
Teresa A. P. Rocha-Santos ◽  
Fernando Gonçalves ◽  
Armando C. Duarte ◽  
...  

2019 ◽  
Author(s):  
Renee Johansen ◽  
Michaeline Albright ◽  
Deanna Lopez ◽  
La Verne Gallegos-Graves ◽  
Andreas Runde ◽  
...  

AbstractDuring plant litter decomposition in soils, carbon has two general fates: return to the atmosphere via microbial respiration or transport into soil where long-term storage may occur. Discovering microbial community features that drive carbon fate from litter decomposition may improve modeling and management of soil carbon. This concept assumes there are features (or underlying processes) that are widespread among disparate communities, and therefore amenable to modeling. We tested this assumption using an epidemiological approach in which two contrasting patterns of carbon flow in laboratory microcosms were delineated as functional states and diverse microbial communities representing each state were compared to discover shared features linked to carbon fate. Microbial communities from 206 soil samples from the southwestern United States were inoculated on plant litter in microcosms, and carbon flow was measured as cumulative carbon dioxide (CO2) and dissolved organic carbon (DOC) after 44 days. Carbon flow varied widely among the microcosms, with a 2-fold range in cumulative CO2efflux and a 5-fold range in DOC quantity. Bacteria, not fungi, were the strongest drivers of DOC variation. The most significant community-level feature linked to DOC abundance was bacterial richness—the same feature linked to carbon fate in human-gut microbiome studies. This proof-of-principle study under controlled conditions suggests common features driving carbon flow in disparate microbial communities can be identified, motivating further exploration of underlying mechanisms that may influence carbon fate in natural ecosystems.


2021 ◽  
Vol 125 ◽  
pp. 107554
Author(s):  
Antoine Lecerf ◽  
Aurélie Cébron ◽  
Franck Gilbert ◽  
Michael Danger ◽  
Hélène Roussel ◽  
...  

Ecosystems ◽  
2017 ◽  
Vol 21 (3) ◽  
pp. 567-581 ◽  
Author(s):  
Alan Mosele Tonin ◽  
Luiz Ubiratan Hepp ◽  
José Francisco Gonçalves

Sign in / Sign up

Export Citation Format

Share Document