contamination of soils
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 43)

H-INDEX

26
(FIVE YEARS 2)

Environments ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 11
Author(s):  
Clarisse Mourinha ◽  
Patrícia Palma ◽  
Carlos Alexandre ◽  
Nuno Cruz ◽  
Sónia Morais Rodrigues ◽  
...  

Both sectors of the Iberian Pyrite Belt, Portuguese and Spanish, have been exploited since ancient times, but more intensively during and after the second half of the 19th century. Large volumes of polymetallic sulfide ore were extracted in open pits or in underground works, processed without environmental concerns, and the generated waste rocks and tailings were simply deposited in the area. Many of these mining sites were abandoned for years under the action of erosive agents, leading to the spread of trace elements and the contamination of soils, waters and sediments. Some of these mine sites have been submitted to rehabilitation actions, mostly using constructive techniques to dig and contain the contaminated tailings and other waste materials, but the remaining soil still needs to be treated with the best available techniques to recover its ecosystem functions. Besides the degraded physical structure and poor nutritional status of these soils, they have common characteristics, as a consequence of the pyrite oxidation and acid drainage produced, such as a high concentration of trace elements and low pH, which must be considered in the remediation plans. This manuscript aims to review the results from studies which have already covered these topics in the Iberian Pyrite Belt, especially in its Portuguese sector, considering: (i) soils’ physicochemical characteristics; (ii) potentially toxic trace elements’ concentration; and (iii) sustainable remediation technologies to cope with this type of soil contamination. Phytostabilization, after the amelioration of the soil’s properties with organic and inorganic amendments, was investigated at the lab and field scale by several authors, and their results were also considered.


2022 ◽  
pp. 15-20
Author(s):  
T. A. Paramonova ◽  
O. L. Komissarova ◽  
N. V. Kuzmenkova ◽  
L. A. Turykin ◽  
O. E. Denisova

On the territory of the Plavsky radioactive hotspot of the Tula region of Russia, formed as a result of the accident at the Chernobyl nuclear power plant in 1986, an assessment of the radiation safety of growing carrots and beets was carried out in 2019. It has been established that at present the content of 137Cs in arable leached chernozems of the surveyed lands is 90–170 kBq/m2 , which is 2.5–4.5 times higher than the permissible level of density of surface radioactive contamination of soils. However, the specific activity of the radionuclide in carrot and beetroot crops does not exceed 5 Bq/kg, which is significantly less than the maximum permissible level of 137Cs accumulation in vegetables (600 Bq/kg for absolutely dry weight). The accumulation coefficients of 137Cs in the total biomass of carrots and beets are 2.0·10−2 and 7.5·10−2, and in eaten root crops – 1.1·10−2 and 2.0·10−2, respectively, which is in good agreement with the IAEA estimate for the intensity of the transition 137Cs in the production of vegetable roots from loamy and clayey soils.


2021 ◽  
Vol 24 (3) ◽  
pp. 52-57
Author(s):  
Oleksandr Tkachuk ◽  
Victoria Verhelis

A significant degree of ploughness of agricultural lands of Ukraine has led to increased erosion and the creation of soils of varying degrees of washout, which leads to dehumification and contamination of soils with toxic substances. Therefore, the purpose of the study was to establish the features of horizontal migration and accumulation of heavy metals of lead, cadmium, copper, and zinc, trace elements of boron and manganese, radionuclides of caesium and strontium on podzolic heavy loamy chernozems with varying degrees of washout: non-eroded, weak and medium washout, conditioned by the development of erosion processes. During the study, spectrophotometric, colorimetric, gamma-spectrometric, and radiochemical methods were used to determine the content of toxic substances in the soil. The study results showed that on slightly washed soils, the content of humus is 12.9% less, easily hydrolysed nitrogen – 13.3%, mobile forms of phosphorus – 51.1%, mobile potassium – 34.9% less than on slightly washed soils. The humus content on medium-washed soil was 8.8% less than on lightly washed soil, easily hydrolysed nitrogen – 14.3% less, mobile phosphorus – 15.3% more, mobile potassium – 42.9% more. A strong horizontal migration of mobile lead forms in washed podzolic heavy loamy chernozem was established, which increases with increasing degree of soil washout with the content of mobile lead forms on medium-washed soil by 24% more than on non-eroded soil. The same dependence was established on the content of mobile forms of zinc in the soil, with their predominance on medium-washed soil by 17 %, compared to non-washed. The content of mobile forms of copper is lower on slightly washed soil, compared to non – washed soil by 5%, boron – 18.8% less on non-washed soil, compared to medium-washed, and the content of mobile forms of manganese increases by 3.3% from slightly to medium-washed soil. It was also found that the concentration of caesium decreased by 25.6% on medium-washed soils, compared to non-washed ones


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2168
Author(s):  
Ekavi A. Isari ◽  
Dimitrios Papaioannou ◽  
Ioannis K. Kalavrouziotis ◽  
Hrissi K. Karapanagioti

Thirty soil samples were collected from fields that have been used for cultivating watermelons and canning tomatoes for over 10 years. The microplastics (MPs) within these samples were separated with a density floatation method and the use of sieves and filters. The microplastics found were black and originated from the black agricultural mulch film (BMF) used in these cultivations. ATR-FTIR spectroscopy revealed that these microplastics are of the same material as the virgin BMF and as a virgin polyethylene film used as blank. SEM images showed that used BMF and MPs found in soil were oxidized by their exposure to sunlight and create fibrous edges that lead to the creation of smaller size MPs. The number of MPs found in fields with watermelon (301 ± 140 items kg−1) were more than four times higher than in fields with canning tomatoes (69 ± 38 items kg−1) due to the double planting each year and to the second planting last year being closer to the sampling episode. All the sample sites were collected from agricultural fields away from the industrial area; therefore, these results prove that agricultural activities might have caused contamination of soils with MPs. This is corroborated even more by the fact that no MPs were found in five extra samples that were taken from uncultivated areas as blanks.


2021 ◽  
Author(s):  
WV. ANDRADE JÚNIOR ◽  
Cândido Oliveira Neto ◽  
Benedito Filho ◽  
Ricardo Okumura ◽  
Eniel Cruz ◽  
...  

Abstract The contamination of soils and water as a result of human actions has been increasingly frequent in the world, the cadmium element the as a promising contaminant of these environments. This element affects the growth and development of vegetables.The objective of the study was to evaluate the growth and concentration of macro and micronutrients in the different organs young plants of Virola surinamensis exposed to Cd. The Cd significantly affected the growth of V. surinamensis reducing the height, stem diameter and biomass production. The Cd influenced negatively Fe, Mg, Ca, N, P and K, especially in the root. The Zn increased in the roots and leaves, while Mn reduced in the root and increased in the leaves of the plants on exposure to Cd. The increase of Zn and Mn in the leaves may have been a strategy to maintain the stability and protection of the photosynthetic apparatus of the plant. the research concluded that cadmium affects the nutritional relationship of this vegetable, however, we could observe that the influence of metal depends on the species being studied, the time of exposure to the metal and the amount of this metal.


Author(s):  
B. Jargalsaihan ◽  

The content of heavy metals in soils of the Nalaikh region, in which coal was mined for a long period, was investigated. The purpose of the work was to assess the possibility of ecological safe renovation of this territory. According to the results obtained, the level of contamination of most areas of the Nalaikh region with heavy metals is insignificant and cannot pose a threat to human health.


Resources ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 46
Author(s):  
Agnieszka Pusz ◽  
Magdalena Wiśniewska ◽  
Dominik Rogalski

The contamination of soils with metals applies, in particular, to areas related to industry, the mining of raw materials and ores, transport, and agriculture. Unlike organic materials, metals cannot degrade over time and need to be reduced, removed, or immobilized in soil. One of the remediation methods for soils contaminated with metals is phytoextraction, which uses plants’ ability to accumulate metals in their own tissues. Metals enter the plant organism through the roots and are transported to the aboveground parts, where they are accumulated. In this study, we evaluated the phytoaccumulative abilities of two plant species tested on soils from industrial areas contaminated with metals to different extents (Zn, Cd, Ni, Pb, Cr, and Cu). The research was conducted for three years under the conditions of a pot experiment. In order to obtain four soils with varying degrees of metal contamination, two soils from industrial areas, G1 (contaminated) and G2 (uncontaminated), were mixed in the following ratios: 1:1, 1:3, 1:7, and 1:9. In the phytoremediation process, Festuca rubra L. and Alyssum saxatile L. were tested. After analyzing the results of the bioconcentration factor (BCF) for the tested plants, it was noted that both of the tested plants accumulated Cd and Zn more easily, followed by Cu, Ni, and Cr, and then Pb to a lesser extent. The values of factors for Cd and Zn were correlated with the high mobility of these elements compared to other metals and their relatively easy uptake by plants. Alyssum saxatile L. has an ability to accumulate Cd compared to Festuca rubra L., which is confirmed by the BCF (0.764) and transfer factor (TF) (3.5) (for 1:7 combination) values. The calculated results for the BCFs for Alyssum saxatile L. are less than one for all tested metals, which allows us to state that Alyssum saxatile L. is not an accumulator.


Chemosphere ◽  
2021 ◽  
Vol 270 ◽  
pp. 129332
Author(s):  
Pierre-André Pittet ◽  
Mylène Josset ◽  
David Boilley ◽  
Antoine Bernollin ◽  
Guillaume Rougier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document