scholarly journals Derivation and validation of a type 2 diabetes treatment selection algorithm for SGLT2-inhibitor and DPP4-inhibitor therapies based on glucose-lowering efficacy: cohort study using trial and routine clinical data

Author(s):  
John M Dennis ◽  
Katherine G Young ◽  
Andrew P McGovern ◽  
Bilal A Mateen ◽  
Sebastian J Vollmer ◽  
...  

Objective: To establish whether clinical patient characteristics routinely measured in primary care can identify people with differing short-term benefits and risks for SGLT2-inhibitor and DPP4-inhibitor therapies, and to derive and validate a treatment selection algorithm to identify the likely optimal therapy for individual patients. Design: Prospective cohort study. Setting: Routine clinical data from United Kingdom general practice (Clinical Practice Research Datalink [CPRD]), and individual-level clinical trial data from 14 multi-country trials of SGLT2-inhibitor and DPP4-inhibitor therapies. Participants: 26,877 new users of SGLT2-inhibitor and DPP4-inhibitor therapy in CPRD over 2013-2019, and 10,414 participants randomised to SGLT2-inhibitor or DPP4-inhibitor therapy in 14 clinical trials, including 3 head-to-head trials of the two therapies (n=2,499). Main outcome measures: The primary outcome was achieved HbA1c 6 months after initiating therapy. Clinical features associated with differential HbA1c outcomes with SGLT2-inhibitor and DPP4-inhibitor therapies were identified in routine clinical data, with associations then tested in trial data. A multivariable treatment selection algorithm to predict differential HbA1c outcomes was developed in a CPRD derivation cohort (n=14,069), with validation in a CPRD validation cohort (n=9,376) and the head-to-head trials. In CPRD, we further explored the relationship between model predictions and secondary outcomes of weight loss and treatment discontinuation. Results: The final treatment selection algorithm included HbA1c, eGFR, ALT, age, and BMI, which were identified as predictors of differential HbA1c outcomes with SGLT2-inhibitor and DPP4-inhibitor therapies using both routine and trial data. In validation cohorts, patient strata predicted to have a ≥5 mmol/mol HbA1c reduction with SGLT2-inhibitor therapy compared with DPP4-inhibitor therapy (38.8% of CPRD validation sample) had an observed greater reduction of 8.8 mmol/mol [95%CI 7.8-9.8] in the CPRD validation sample, a 5.8 mmol/mol (95%CI 3.9-7.7) greater reduction in the Cantata D/D2 trials, and a 6.6 mmol/mol [95%CI 2.2-11.0]) greater reduction in the BI1245.20 trial. In CPRD, there was a greater weight reduction with SGLT2-inhibitor therapy regardless of predicted glycaemic benefit. Strata predicted to have greater reduction in HbA1c on SGLT2-inhibitor therapy had a similar risk of discontinuation as on DPP4-inhibitor therapy. In contrast, strata predicted to have greater reduction in HbA1c with DPP4-inhibitor therapy were half as likely to discontinue DPP4-inhibitor therapy than SGLT2-inhibitor therapy. Conclusions: Routinely measured clinical features are robustly associated with differential glycaemic responses to SGLT2-inhibitor and DPP4-inhibitor therapies. Combining features into a treatment selection algorithm can inform clinical decisions concerning optimal type 2 diabetes treatment choices.

Endocrine ◽  
2017 ◽  
Vol 56 (1) ◽  
pp. 212-216 ◽  
Author(s):  
A. Pfützner ◽  
D. Klonoff ◽  
L. Heinemann ◽  
N. Ejskjaer ◽  
J. Pickup

2021 ◽  
Author(s):  
Bingxian Xie ◽  
Wesley Ramirez ◽  
Amanda M. Mills ◽  
Brydie R. Huckestein ◽  
Moira Anderson ◽  
...  

Abstract BackgroundSodium-glucose co-transporter type 2 (SGLT2) inhibitor therapy to treat type 2 diabetes unexpectedly reduced all-cause mortality and hospitalization due to heart failure in several large-scale clinical trials, and has since been shown to produce similar cardiovascular disease-protective effects in patients without diabetes. How SGLT2 inhibitor therapy improves cardiovascular disease outcomes remains incompletely understood. Metabolic flexibility refers to the ability of a cell or organ to adjust its use of metabolic substrates, such as glucose or fatty acids, in response to physiological or pathophysiological conditions, and is a feature of a healthy heart that may be lost during diabetic cardiomyopathy and in the failing heart. While several studies have addressed metabolic changes in hearts in response to SGLT2 inhibitor therapy, none have specifically assessed metabolic flexibility in an in vivo system. We therefore undertook the described studies to determine the effects of SGLT2 inhibitor therapy on cardiac metabolic flexibility in vivo in obese, insulin resistant mice.MethodsDiet-induced obese mice were treated with the SGLT2 inhibitor empagliflozin (EMPA; 10 mg/kg/d) for four weeks prior to study and compared with untreated obese and lean controls. We assessed changes in body weight and composition, plasma metabolites in response to fasting/re-feeding, cardiac hypertrophy by echocardiography, the response to ischemic stress following coronary artery ligation, as well as cardiac-specific rates of relative glucose and fatty acid utilization using a [U13C]-glucose infusion during fasting and hyperinsulinemic euglycemic clamp.ResultsEMPA-treated mice presented with reduced cardiac hypertrophy and protection from ischemic stress compared with obese controls. In the fasted state, relative rates of cardiac glucose and fatty acid utilization were similar in control and EMPA-treated mice. During the hyperinsulinemic euglycemic clamp, rates of cardiac glucose utilization and metabolic flexibility were reduced in obese compared with lean mice, and EMPA-treatment partially restored both features. ConclusionsSGLT2 inhibitor therapy restored cardiac metabolic flexibility in obese, insulin resistant mice, and was associated with reduced cardiac hypertrophy and protection from ischemia. These observations suggest that the cardiovascular disease-protective effects of SGLT2 inhibitors may in part be explained by beneficial effects on cardiac metabolic substrate selection.


Sign in / Sign up

Export Citation Format

Share Document