scholarly journals An interactive dashboard to track themes, development maturity, and global equity in clinical artificial intelligence research

Author(s):  
Joe Zhang ◽  
Stephen Whebell ◽  
Jack Gallifant ◽  
Sanjay Budhdeo ◽  
Heather Mattie ◽  
...  

The global clinical artificial intelligence (AI) research landscape is constantly evolving, with heterogeneity across specialties, disease areas, geographical representation, and development maturity. Continual assessment of this landscape is important for monitoring progress. Taking advantage of developments in natural language processing (NLP), we produce an end-to-end NLP pipeline to automate classification and characterization of all original clinical AI research on MEDLINE, outputting real-time results to a public, interactive dashboard (https://aiforhealth.app/).

2021 ◽  
pp. 1-13
Author(s):  
Lamiae Benhayoun ◽  
Daniel Lang

BACKGROUND: The renewed advent of Artificial Intelligence (AI) is inducing profound changes in the classic categories of technology professions and is creating the need for new specific skills. OBJECTIVE: Identify the gaps in terms of skills between academic training on AI in French engineering and Business Schools, and the requirements of the labour market. METHOD: Extraction of AI training contents from the schools’ websites and scraping of a job advertisements’ website. Then, analysis based on a text mining approach with a Python code for Natural Language Processing. RESULTS: Categorization of occupations related to AI. Characterization of three classes of skills for the AI market: Technical, Soft and Interdisciplinary. Skills’ gaps concern some professional certifications and the mastery of specific tools, research abilities, and awareness of ethical and regulatory dimensions of AI. CONCLUSIONS: A deep analysis using algorithms for Natural Language Processing. Results that provide a better understanding of the AI capability components at the individual and the organizational levels. A study that can help shape educational programs to respond to the AI market requirements.


Author(s):  
Seonho Kim ◽  
Jungjoon Kim ◽  
Hong-Woo Chun

Interest in research involving health-medical information analysis based on artificial intelligence, especially for deep learning techniques, has recently been increasing. Most of the research in this field has been focused on searching for new knowledge for predicting and diagnosing disease by revealing the relation between disease and various information features of data. These features are extracted by analyzing various clinical pathology data, such as EHR (electronic health records), and academic literature using the techniques of data analysis, natural language processing, etc. However, still needed are more research and interest in applying the latest advanced artificial intelligence-based data analysis technique to bio-signal data, which are continuous physiological records, such as EEG (electroencephalography) and ECG (electrocardiogram). Unlike the other types of data, applying deep learning to bio-signal data, which is in the form of time series of real numbers, has many issues that need to be resolved in preprocessing, learning, and analysis. Such issues include leaving feature selection, learning parts that are black boxes, difficulties in recognizing and identifying effective features, high computational complexities, etc. In this paper, to solve these issues, we provide an encoding-based Wave2vec time series classifier model, which combines signal-processing and deep learning-based natural language processing techniques. To demonstrate its advantages, we provide the results of three experiments conducted with EEG data of the University of California Irvine, which are a real-world benchmark bio-signal dataset. After converting the bio-signals (in the form of waves), which are a real number time series, into a sequence of symbols or a sequence of wavelet patterns that are converted into symbols, through encoding, the proposed model vectorizes the symbols by learning the sequence using deep learning-based natural language processing. The models of each class can be constructed through learning from the vectorized wavelet patterns and training data. The implemented models can be used for prediction and diagnosis of diseases by classifying the new data. The proposed method enhanced data readability and intuition of feature selection and learning processes by converting the time series of real number data into sequences of symbols. In addition, it facilitates intuitive and easy recognition, and identification of influential patterns. Furthermore, real-time large-capacity data analysis is facilitated, which is essential in the development of real-time analysis diagnosis systems, by drastically reducing the complexity of calculation without deterioration of analysis performance by data simplification through the encoding process.


AI Magazine ◽  
2015 ◽  
Vol 36 (1) ◽  
pp. 99-102
Author(s):  
Tiffany Barnes ◽  
Oliver Bown ◽  
Michael Buro ◽  
Michael Cook ◽  
Arne Eigenfeldt ◽  
...  

The AIIDE-14 Workshop program was held Friday and Saturday, October 3–4, 2014 at North Carolina State University in Raleigh, North Carolina. The workshop program included five workshops covering a wide range of topics. The titles of the workshops held Friday were Games and Natural Language Processing, and Artificial Intelligence in Adversarial Real-Time Games. The titles of the workshops held Saturday were Diversity in Games Research, Experimental Artificial Intelligence in Games, and Musical Metacreation. This article presents short summaries of those events.


10.2196/21453 ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. e21453
Author(s):  
Yvonne W Leung ◽  
Elise Wouterloot ◽  
Achini Adikari ◽  
Graeme Hirst ◽  
Daswin de Silva ◽  
...  

Background Cancer and its treatment can significantly impact the short- and long-term psychological well-being of patients and families. Emotional distress and depressive symptomatology are often associated with poor treatment adherence, reduced quality of life, and higher mortality. Cancer support groups, especially those led by health care professionals, provide a safe place for participants to discuss fear, normalize stress reactions, share solidarity, and learn about effective strategies to build resilience and enhance coping. However, in-person support groups may not always be accessible to individuals; geographic distance is one of the barriers for access, and compromised physical condition (eg, fatigue, pain) is another. Emerging evidence supports the effectiveness of online support groups in reducing access barriers. Text-based and professional-led online support groups have been offered by Cancer Chat Canada. Participants join the group discussion using text in real time. However, therapist leaders report some challenges leading text-based online support groups in the absence of visual cues, particularly in tracking participant distress. With multiple participants typing at the same time, the nuances of the text messages or red flags for distress can sometimes be missed. Recent advances in artificial intelligence such as deep learning–based natural language processing offer potential solutions. This technology can be used to analyze online support group text data to track participants’ expressed emotional distress, including fear, sadness, and hopelessness. Artificial intelligence allows session activities to be monitored in real time and alerts the therapist to participant disengagement. Objective We aim to develop and evaluate an artificial intelligence–based cofacilitator prototype to track and monitor online support group participants’ distress through real-time analysis of text-based messages posted during synchronous sessions. Methods An artificial intelligence–based cofacilitator will be developed to identify participants who are at-risk for increased emotional distress and track participant engagement and in-session group cohesion levels, providing real-time alerts for therapist to follow-up; generate postsession participant profiles that contain discussion content keywords and emotion profiles for each session; and automatically suggest tailored resources to participants according to their needs. The study is designed to be conducted in 4 phases consisting of (1) development based on a subset of data and an existing natural language processing framework, (2) performance evaluation using human scoring, (3) beta testing, and (4) user experience evaluation. Results This study received ethics approval in August 2019. Phase 1, development of an artificial intelligence–based cofacilitator, was completed in January 2020. As of December 2020, phase 2 is underway. The study is expected to be completed by September 2021. Conclusions An artificial intelligence–based cofacilitator offers a promising new mode of delivery of person-centered online support groups tailored to individual needs. International Registered Report Identifier (IRRID) DERR1-10.2196/21453


2020 ◽  
Author(s):  
Yvonne W Leung ◽  
Elise Wouterloot ◽  
Achini Adikari ◽  
Graeme Hirst ◽  
Daswin de Silva ◽  
...  

BACKGROUND Cancer and its treatment can significantly impact the short- and long-term psychological well-being of patients and families. Emotional distress and depressive symptomatology are often associated with poor treatment adherence, reduced quality of life, and higher mortality. Cancer support groups, especially those led by health care professionals, provide a safe place for participants to discuss fear, normalize stress reactions, share solidarity, and learn about effective strategies to build resilience and enhance coping. However, in-person support groups may not always be accessible to individuals; geographic distance is one of the barriers for access, and compromised physical condition (eg, fatigue, pain) is another. Emerging evidence supports the effectiveness of online support groups in reducing access barriers. Text-based and professional-led online support groups have been offered by Cancer Chat Canada. Participants join the group discussion using text in real time. However, therapist leaders report some challenges leading text-based online support groups in the absence of visual cues, particularly in tracking participant distress. With multiple participants typing at the same time, the nuances of the text messages or red flags for distress can sometimes be missed. Recent advances in artificial intelligence such as deep learning–based natural language processing offer potential solutions. This technology can be used to analyze online support group text data to track participants’ expressed emotional distress, including fear, sadness, and hopelessness. Artificial intelligence allows session activities to be monitored in real time and alerts the therapist to participant disengagement. OBJECTIVE We aim to develop and evaluate an artificial intelligence–based cofacilitator prototype to track and monitor online support group participants’ distress through real-time analysis of text-based messages posted during synchronous sessions. METHODS An artificial intelligence–based cofacilitator will be developed to identify participants who are at-risk for increased emotional distress and track participant engagement and in-session group cohesion levels, providing real-time alerts for therapist to follow-up; generate postsession participant profiles that contain discussion content keywords and emotion profiles for each session; and automatically suggest tailored resources to participants according to their needs. The study is designed to be conducted in 4 phases consisting of (1) development based on a subset of data and an existing natural language processing framework, (2) performance evaluation using human scoring, (3) beta testing, and (4) user experience evaluation. RESULTS This study received ethics approval in August 2019. Phase 1, development of an artificial intelligence–based cofacilitator, was completed in January 2020. As of December 2020, phase 2 is underway. The study is expected to be completed by September 2021. CONCLUSIONS An artificial intelligence–based cofacilitator offers a promising new mode of delivery of person-centered online support groups tailored to individual needs. INTERNATIONAL REGISTERED REPORT DERR1-10.2196/21453


Author(s):  
Katie Miller

The challenge presented is an age when some decisions are made by humans, some are made by AI, and some are made by a combination of AI and humans. For the person refused housing, a phone service, or employment, the experience is the same, but the ability to understand what has happened and obtain a remedy may be very different if the discrimination is attributable to or contributed by an AI system. If we are to preserve the policy intentions of our discrimination, equal opportunity, and human rights laws, we need to understand how discrimination arises in AI systems; how design in AI systems can mitigate such discrimination; and whether our existing laws are adequate to address discrimination in AI. This chapter endeavours to provide this understanding. In doing so, it focuses on narrow but advanced forms of artificial intelligence, such as natural language processing, facial recognition, and cognitive neural networks.


Sign in / Sign up

Export Citation Format

Share Document