scholarly journals Molecular Basis of Antibiotic Self-Resistance in a Bee Larvae Pathogen

2021 ◽  
Author(s):  
Tam Dang ◽  
Bernhard Loll ◽  
Sebastian Müller ◽  
Ranko Skobalj ◽  
Julia Ebeling ◽  
...  

Paenibacillus larvae, the causative agent of the devastating honey-bee disease American Foulbrood, produces the cationic polyketide-peptide hybrid paenilamicin that displays high antibacterial and antifungal activity. Its biosynthetic gene cluster contains a gene coding for the N-acetyltransferase PamZ. We show that PamZ acts as self-resistance factor in P. larvae by deactivation of paenilamicin. Using tandem MS, NMR spectroscopy and synthetic diastereomers, we identified the N-terminal amino group of the agmatinamic acid as the N-acetylation site. These findings highlight the pharmacophore region of paenilamicin, which we very recently identified as a new ribosome inhibitor. Here, we further elucidated the crystal structure of PamZ:acetyl-CoA complex at 1.34 Å resolution. An unusual tandem-domain architecture provides a well-defined substrate-binding groove decorated with negatively-charged residues to specifically attract the cationic paenilamicin. Our results will help to understand the mode of action of paenilamicin and its role in pathogenicity of P. larvae to fight American Foulbrood.

2020 ◽  
Vol 24 (19) ◽  
pp. 2272-2282
Author(s):  
Vu Ngoc Toan ◽  
Nguyen Minh Tri ◽  
Nguyen Dinh Thanh

Several 6- and 7-alkoxy-2-oxo-2H-chromene-4-carbaldehydes were prepared from corresponding alkyl ethers of 6- and 7-hydroxy-4-methyl-2-oxo-2H-chromen-2-ones by oxidation using selenium dioxide. 6- and 7-Alkoxy-4-methyl-2H-chromenes were obtained with yields of 57-85%. Corresponding 4-carbaldehyde derivatives were prepared with yields of 41-67%. Thiosemicarbazones of these aldehydes with D-galactose moiety were synthesized by reaction of these aldehydes with N-(2,3,4,6-tetra-O-acetyl-β-Dgalactopyranosyl) thiosemicarbazide with yields of 62-74%. These thiosemicarbazones were screened for their antibacterial and antifungal activities in vitro against bacteria, such as Staphylococcus aureus, Escherichia coli, and fungi, such as Aspergillus niger, Candida albicans. Several compounds exhibited strong inhibitory activity with MIC values of 0.78- 1.56 μM, including 8a (against S. aureus, E. coli, and C. albicans), 8d (against E. coli and A. niger), 9a (against S. aureus), and 9c (against S. aureus and C. albicans).


2004 ◽  
Vol 19 (4) ◽  
pp. 373-379 ◽  
Author(s):  
Khalid Mohammed Khan ◽  
Zafar S. Saify ◽  
Muhammad Zarrar Khan ◽  
Zia-Ullah ◽  
M. Iqbal Choudhary ◽  
...  

2011 ◽  
Vol 02 (01) ◽  
pp. 1-9 ◽  
Author(s):  
Vanya B. Kurteva ◽  
Svilen P. Simeonov ◽  
Margarita Stoilova-Disheva

2002 ◽  
Vol 16 (8) ◽  
pp. 727-731 ◽  
Author(s):  
H. Oumzil ◽  
S. Ghoulami ◽  
M. Rhajaoui ◽  
A. Ilidrissi ◽  
S. Fkih-Tetouani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document