scholarly journals Intact finger representation within primary sensorimotor cortex of Musicians Dystonia

Author(s):  
Anna Sadnicka ◽  
Tobias Wiestler ◽  
Katherine Butler ◽  
Eckart Altenmueller ◽  
Mark John Edwards ◽  
...  

Musicians dystonia presents with a persistent deterioration of motor control during musical performance. A predominant hypothesis has been that this is underpinned by maladaptive neural changes to the somatotopic organisation of finger representations within primary somatosensory cortex. Here, we tested this hypothesis by investigating the finger-specific activity patterns in the primary somatosensory and motor cortex using functional magnetic resonance (fMRI) in nine musicians with dystonia and nine healthy musicians. A purpose-built keyboard device allowed fMRI characterisation of activity patterns elicited during passive extension and active finger presses of individual fingers. We analysed the data using both traditional spatial analysis and state-of-the art multivariate analyses. Our analysis reveals that digit representations in musicians were poorly captured by spatial measures. An optimised spatial metric found clear somatotopy but no difference in the spatial geometry between fingers. Representational similarity analysis was confirmed as a highly reliable technique and more consistent than all spatial metrics evaluated. Significantly, the dissimilarity architecture was equivalent for musicians with and without dystonia and no expansion or spatial shift of digit representation maps were found in the symptomatic group. Our results therefore suggest that the neural representation of generic finger maps in primary sensorimotor cortex is intact in Musicians dystonia. These results are against the idea that task-specific dystonia is associated with a distorted hand somatotopy and suggests that task-specific dystonia is due to a higher order disruption of skill encoding. Such a formulation can better explain the task-specific deficit and offers mechanistic insight for therapeutic interventions.

2021 ◽  
pp. 1-15
Author(s):  
Konstantinos Bromis ◽  
Petar P. Raykov ◽  
Leah Wickens ◽  
Warrick Roseboom ◽  
Chris M. Bird

Abstract An episodic memory is specific to an event that occurred at a particular time and place. However, the elements that comprise the event—the location, the people present, and their actions and goals—might be shared with numerous other similar events. Does the brain preferentially represent certain elements of a remembered event? If so, which elements dominate its neural representation: those that are shared across similar events, or the novel elements that define a specific event? We addressed these questions by using a novel experimental paradigm combined with fMRI. Multiple events were created involving conversations between two individuals using the format of a television chat show. Chat show “hosts” occurred repeatedly across multiple events, whereas the “guests” were unique to only one event. Before learning the conversations, participants were scanned while viewing images or names of the (famous) individuals to be used in the study to obtain person-specific activity patterns. After learning all the conversations over a week, participants were scanned for a second time while they recalled each event multiple times. We found that during recall, person-specific activity patterns within the posterior midline network were reinstated for the hosts of the shows but not the guests, and that reinstatement of the hosts was significantly stronger than the reinstatement of the guests. These findings demonstrate that it is the more generic, familiar, and predictable elements of an event that dominate its neural representation compared with the more idiosyncratic, event-defining, elements.


1996 ◽  
Vol 16 (1) ◽  
pp. 23-33 ◽  
Author(s):  
Norihiro Sadato ◽  
Vicente Ibañez ◽  
Marie-Pierre Deiber ◽  
Gregory Campbell ◽  
Marc Leonardo ◽  
...  

To study the effect of the repetition rate of a simple movement on the distribution and magnitude of neuronal recruitment, we measured regional CBF (rCBF) in eight normal volunteers, using positron emission tomography and 15O-labeled water. An auditory-cued, repetitive flexion movement of the right index finger against the thumb was performed at very slow (0.25 and 0.5 Hz), slow (0.75 and 1 Hz), fast (2 and 2.5 Hz), and very fast (3 and 4 Hz) rates. The increase of rCBF during movement relative to the resting condition was calculated for each pair of movement conditions. Left primary sensorimotor cortex showed no significant activation at the very slow rates. There was a rapid rise of rCBF between the slow and the fast rates, but no further increase at the very fast rates. The right cerebellum showed similar changes. Changes in the left primary sensorimotor cortex and the cerebellum likely reflect the effect of the movement rate. The posterior supplementary motor area (SMA) showed its highest activation at the very slow rates but no significant activation at the very fast rates. Changes correlating with those in the SMA were found in the anterior cingulate gyrus, right prefrontal area, and right thalamus. The decreases in CBF may reflect a progressive change in performance from reactive to predictive.


2008 ◽  
Vol 20 (7) ◽  
pp. 1250-1265 ◽  
Author(s):  
Daniela B. Fenker ◽  
Julietta U. Frey ◽  
Hartmut Schuetze ◽  
Dorothee Heipertz ◽  
Hans-Jochen Heinze ◽  
...  

Exploring a novel environment can facilitate subsequent hippocampal long-term potentiation in animals. We report a related behavioral enhancement in humans. In two separate experiments, recollection and free recall, both measures of hippocampus-dependent memory formation, were enhanced for words studied after a 5-min exposure to unrelated novel as opposed to familiar images depicting indoor and outdoor scenes. With functional magnetic resonance imaging, the enhancement was predicted by specific activity patterns observed during novelty exposure in parahippocampal and dorsal prefrontal cortices, regions which are known to be linked to attentional orienting to novel stimuli and perceptual processing of scenes. Novelty was also associated with activation of the substantia nigra/ventral tegmental area of the midbrain and the hippocampus, but these activations did not correlate with contextual memory enhancement. These findings indicate remarkable parallels between contextual memory enhancement in humans and existing evidence regarding contextually enhanced hippocampal plasticity in animals. They provide specific behavioral clues to enhancing hippocampus-dependent memory in humans.


2021 ◽  
Author(s):  
Yingying Huang ◽  
Frank Pollick ◽  
Ming Liu ◽  
Delong Zhang

Abstract Visual mental imagery and visual perception have been shown to share a hierarchical topological visual structure of neural representation. Meanwhile, many studies have reported a dissociation of neural substrate between mental imagery and perception in function and structure. However, we have limited knowledge about how the visual hierarchical cortex involved into internally generated mental imagery and perception with visual input. Here we used a dataset from previous fMRI research (Horikawa & Kamitani, 2017), which included a visual perception and an imagery experiment with human participants. We trained two types of voxel-wise encoding models, based on Gabor features and activity patterns of high visual areas, to predict activity in the early visual cortex (EVC, i.e., V1, V2, V3) during perception, and then evaluated the performance of these models during mental imagery. Our results showed that during perception and imagery, activities in the EVC could be independently predicted by the Gabor features and activity of high visual areas via encoding models, which suggested that perception and imagery might share neural representation in the EVC. We further found that there existed a Gabor-specific and a non-Gabor-specific neural response pattern to stimuli in the EVC, which were shared by perception and imagery. These findings provide insight into mechanisms of how visual perception and imagery shared representation in the EVC.


1998 ◽  
Vol 76 (4) ◽  
pp. 668-672 ◽  
Author(s):  
Maria A Eifler ◽  
Norman A Slade

We examined mass-specific activity patterns among overwintering cotton rats (Sigmodon hispidus) in northeastern Kansas. We livetrapped animals for a 24-h period, checking traps every 2 h. Trapping occurred every 2 weeks for 5 months. We estimated probability of capture for each mass class, time class, and date, then tested for differences in probability of capture (i.e., activity levels) using a General Linear Model with temperature as a covariate. Large cotton rats were significantly less active than small and intermediate-sized cotton rats. Activity of small cotton rats increased with decreasing temperature, whereas larger cotton rats were less responsive to temperature. Finally, activity levels of large and small cotton rats did not vary significantly with time of day, but intermediate-sized cotton rats were significantly less likely to be captured during the night than at dusk.


Neuroreport ◽  
1995 ◽  
Vol 6 (18) ◽  
pp. 2589-2593 ◽  
Author(s):  
Antti Korvenoja ◽  
Heidi Wikström ◽  
Juha Huttunen ◽  
Juha Virtanan ◽  
Petteri Laine ◽  
...  

2019 ◽  
Vol 23 ◽  
pp. 101847 ◽  
Author(s):  
Nobuaki Mizuguchi ◽  
Kento Nakagawa ◽  
Yutaka Tazawa ◽  
Kazuyuki Kanosue ◽  
Kimitaka Nakazawa

Sign in / Sign up

Export Citation Format

Share Document