scholarly journals ESR2 regulates indian hedgehog signaling in neonatal rat ovary

2021 ◽  
Author(s):  
Iman Dilower ◽  
Veera Raghavulu Praveen Chakravarthi ◽  
Eun B Lee ◽  
Subhra Ghosh ◽  
Shaon Borosha ◽  
...  

The transcriptional regulatory function of estrogen receptor β (ESR2) is essential for the regulation of primordial follicle activation (PFA). Increased PFA due to the loss of ESR2 becomes evident as early as postnatal day 8 (PND8). To identify the ESR2-regulated genes that control PFA, we performed RNA-seq analyses of wildtype, and Esr2 knockout (Esr2KO) neonatal rat ovaries collected on PND4, PND6, and PND8. Among the differentially expressed genes in Esr2KO ovaries, indian hedgehog (Ihh) displayed the highest downregulation among the ovary enriched genes. IHH regulated genes including Hhip as well as the steroidogenic enzymes were also downregulated in Esr2KO rat ovaries. Remarkably, the expression of Ihh in Esr2KO ovaries was not upregulated despite the high levels of Gdf9 and Bmp15, which are known regulators of Ihh expression in granulosa cells. Our findings suggest that indian hedgehog signaling in the neonatal rat ovary is dependent on ESR2.

Reproduction ◽  
2015 ◽  
Vol 150 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Tonny Studsgaard Petersen ◽  
Martin Stahlhut ◽  
Claus Yding Andersen

Phosphodiesterases (PDEs) are important regulators of the intracellular cAMP concentration, which is a central second messenger that affects a multitude of intracellular functions. In the ovaries, cAMP exerts diverse functions, including regulation of ovulation and it has been suggested that augmented cAMP levels stimulate primordial follicle growth. The present study examined the gene expression, enzyme activity and immunolocalization of the different cAMP hydrolysing PDEs families in the rat ovary. Further, the effect of PDE4 inhibition on primordial follicle activation in cultured neonatal rat ovaries was also evaluated. We found varied expression of all eight families in the ovary with Pde7b and Pde8a having the highest expression each accounting for more than 20% of the total PDE mRNA. PDE4 accounted for 15–26% of the total PDE activity. Immunoreactive PDE11A was found in the oocytes and PDE2A in the corpora lutea. Incubating neonatal rat ovaries with PDE4 inhibitors did not increase primordial follicle activation or change the expression of the developing follicle markers Gdf9, Amh, Inha, the proliferation marker Mki67 or the primordial follicle marker Tmeff2. In addition, the cAMP analogue 8-bromo-cAMP did not increase AKT1 or FOXO3A phosphorylation associated with follicle activation or increase the expression of Kitlg known to be associated with follicle differentiation but did increase the Tmeff2, Mki67 and Inha expression in a dose-dependent manner. In conclusion, this study shows that both Pde7b and Pde8a are highly expressed in the rodent ovary and that PDE4 inhibition does not cause an increase in primordial follicle activation.


Endocrinology ◽  
2014 ◽  
Vol 155 (11) ◽  
pp. 4461-4472 ◽  
Author(s):  
Katelee Barrett Mueller ◽  
Qing Lu ◽  
Najwa N. Mohammad ◽  
Victor Luu ◽  
Amy McCurley ◽  
...  

2016 ◽  
Vol 95 (4) ◽  
pp. 78-78 ◽  
Author(s):  
H. Zhang ◽  
K. Nagaoka ◽  
K. Usuda ◽  
K. Nozawa ◽  
K. Taya ◽  
...  

2007 ◽  
Vol 1116 (1) ◽  
pp. 100-112 ◽  
Author(s):  
E. KOYAMA ◽  
T. OCHIAI ◽  
R. B. ROUNTREE ◽  
D. M. KINGSLEY ◽  
M. ENOMOTO-IWAMOTO ◽  
...  

1998 ◽  
Vol 158 (2) ◽  
pp. 221-228 ◽  
Author(s):  
P Bagavandoss

The distribution of gelatinases/matrix metalloproteinases-2 and -9 (MMP-2 and MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in neonatal and gonadotropin-primed immature rat ovaries was studied by immunofluorescent microscopy. Immature female Long-Evans rats were primed with 15 IU pregnant mare's serum gonadotropin (PMSG) in 100 microliters PBS. Two days later, to induce ovulation, the rats were injected with human chorionic gonadotropin (hCG, 5 IU/100 microliters PBS). The animals were killed at appropriate times and the ovaries removed and processed for cryostat or paraffin sectioning. Ovaries were also obtained from 7-day-old neonatal rats and processed as above. In the neonatal rat ovary, MMP-2 was present in the follicle and in the ovarian surface epithelium. MMP-9 was not detectable in the neonatal ovary. TIMP-1 was present in the oocyte and in the surface epithelium. In the PMSG-primed ovary, MMP-2 was present in the granulosa and thecal cells of the ovary. MMP-9 distribution, however, was restricted to the interstitial and thecal cells. TIMP-1 was mainly present in the blood vessels and thecal cells, with minor staining in the granulosa cells. In the developing corpus luteum, luteal and endothelial cells were positive for MMP-2. MMP-9 localization was restricted to the plasma membrane of the luteal and interstitial cells. TIMP-1 was clearly observed in the luteal capillaries and, to a lesser extent, in the luteal cell plasma membrane. This distribution of MMP-2, MMP-9, and TIMP-1 in the corpus luteum persisted throughout the life span of the corpus luteum. The spatial and temporal distribution of the gelatinases and TIMP-1 suggests unique roles for these proteins in the rat ovary.


1991 ◽  
Vol 11 (12) ◽  
pp. 6317-6327 ◽  
Author(s):  
M Vidal ◽  
R F Gaber

In Saccharomyces cerevisiae, TRK1 and TRK2 encode the high- and low-affinity K+ transporters, respectively. In cells containing a deletion of TRK1, transcription levels of TRK2 are extremely low and are limiting for growth in media containing low levels of K+ (Trk- phenotype). Recessive mutations in RPD1 and RPD3 suppress the TRK2, conferring an approximately fourfold increase in transcription. rpd3 mutations confer pleiotropic phenotypes, including (i) mating defects, (ii) hypersensitivity to cycloheximide, (iii) inability to sporulate as homozygous diploids, and (iv) constitutive derepression of acid phosphatase. RPD3 was cloned and is predicted to encode a 48-kDa protein with no extensive similarity to proteins contained in current data bases. Deletion of RPD3 is not lethal but confers phenotypes identical to those caused by spontaneous mutations. RPD3 is required for both full repression and full activation of transcription of target genes including PHO5, STE6, and TY2. RPD3 is the second gene required for this function, since RPD1 is also required. The effects of mutations in RPD1 and RPD3 are not additive, suggesting that these genes are involved in the same transcriptional regulatory function or pathway.


2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
C De Roo ◽  
S Lierman ◽  
K Tilleman ◽  
P De Sutter

Abstract STUDY QUESTION What is the role of the Hippo and PI3K/Akt pathway in follicles during ovarian tissue culture in tissue derived from oncological patients and transgender men? SUMMARY ANSWER Results highlight a Hippo pathway driven primordial follicle activation in vitro, predominantly from Day 0 to Day 4. WHAT IS KNOWN ALREADY In-vitro ovarian tissue culture aims at activating and maturing primordial follicles for fertility restoration in patients with a threatened ovarian reserve. Not all patients are eligible for ovarian cortex transplantation and therefore several groups are attempting to culture ovarian tissue in-vitro. Cortex fragmentation disrupts the Hippo pathway, leading to increased expression of downstream growth factors and follicle growth. The PI3K/Akt pathway is considered the intracellular pathway to where different extracellular factors involved in primordial follicle activation in-vivo converge. In order to optimise current ovarian tissue culture models, information on progression of these pathways during tissue culture is mandatory. STUDY DESIGN, SIZE, DURATION The first step of a multistep cortex culture system was performed using 144 ovarian cortex pieces from a total of six patients. Per patient, 24 cortical strips were cultured for 6 days and six pieces per patient were collected for downstream analysis of follicle development and Hippo and PI3K/Akt pathway targets every second day. PARTICIPANTS/MATERIALS, SETTING, METHODS Ovarian tissue was obtained from oncological (N = 3; 28.67 ± 4.51 years) and transgender (N = 3; 23.33 ± 1.53 years) patients. Follicles were analysed using haematoxylin-eosin staining and pathways were studied using immunohistochemistry and precise follicle excision by laser capture micro-dissection for RT-qPCR analysis. MIQE guidelines for RT-qPCR were pursued. Reference gene selection (GAPDH, RPL3A, 18s rRNA) was performed using GeNorm Reference Gene Selection Kit. Statistical analysis was conducted with IBM SPSS Statistics 23 (Poisson regression, negative binomial regression, ANOVA and paired t-test). MAIN RESULTS AND THE ROLE OF CHANCE Immunohistochemical analysis confirmed a Hippo pathway driven primordial follicle activation due to mechanical manipulation of the cortical strips. Ovarian tissue preparation and culture induced the inhibitory phosphorylated Yes-associated protein (pYAP) to disappear in granulosa cells of primordial follicles on Day 2. The stimulatory YAP on the contrary appeared in primordial granulosa cells over increasing culture days. Looking at the YAP target connective tissue growth factor (CTGF), a significantly up-regulated CTGF was noted in primordial follicles when comparing Day 2 and Day 4 (ratio Day 2/4 = 0.082; P < 0.05), clearly showing an effect on the Hippo pathway in primordial follicles during tissue culture. Follicle classification showed a significant drop in estimated primordial follicle counts in the oncological cohort (−78%; P = 0.021) on Day 2 and in the transgender cohort on Day 4 (−634%; P = 0.008). Intermediate follicle counts showed a non-significant increasing trend to during culture and this follicle recruitment and growth resulted in a significant rise in estimated primary follicle counts on Day 6 in oncological patients (170%; P = 0.025) and, although limited in absolute numbers, a significant increase in secondary follicles on Day 4 (367%; P = 0.021) in the transgender cohort. Subsequent antral follicle development could not be observed. LIMITATIONS, REASONS FOR CAUTION A limitation is the small sample size, inherent to this study subject, especially as a large amount of tissue was needed per patient to reduce inter-patient variation in different downstream analysis techniques. A particular and specific weakness of this study is the inability to include an age-matched control group. WIDER IMPLICATIONS OF THE FINDINGS These findings support an adapted tissue preparation for Hippo pathway disruption and a shorter first phase of tissue culture. This work may also have implications for transplantation of cryopreserved tissue as larger strips (and thus slower burnout due to less Hippo pathway disruption) could be a benefit. STUDY FUNDING/COMPETING INTEREST(S) This research was financially supported by the Foundation Against Cancer (Stichting tegen Kanker, TBMT001816N), the Flemish Foundation of Scientific Research (FWO Vlaanderen, FWO G0.065.11N10) and the Gender Identity Research and Education Society (GIRES) foundation. The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.


Sign in / Sign up

Export Citation Format

Share Document