scholarly journals Synovial Joint Formation during Mouse Limb Skeletogenesis: Roles of Indian Hedgehog Signaling

2007 ◽  
Vol 1116 (1) ◽  
pp. 100-112 ◽  
Author(s):  
E. KOYAMA ◽  
T. OCHIAI ◽  
R. B. ROUNTREE ◽  
D. M. KINGSLEY ◽  
M. ENOMOTO-IWAMOTO ◽  
...  
2007 ◽  
Vol 236 (2) ◽  
pp. 426-434 ◽  
Author(s):  
Yoshihiro Shibukawa ◽  
Blanche Young ◽  
Changshan Wu ◽  
Satoru Yamada ◽  
Fanxin Long ◽  
...  

Development ◽  
2000 ◽  
Vol 127 (12) ◽  
pp. 2763-2772 ◽  
Author(s):  
M. Ramalho-Santos ◽  
D.A. Melton ◽  
A.P. McMahon

The gastrointestinal tract develops from the embryonic gut, which is composed of an endodermally derived epithelium surrounded by cells of mesodermal origin. Cell signaling between these two tissue layers appears to play a critical role in coordinating patterning and organogenesis of the gut and its derivatives. We have assessed the function of Sonic hedgehog and Indian hedgehog genes, which encode members of the Hedgehog family of cell signals. Both are expressed in gut endoderm, whereas target genes are expressed in discrete layers in the mesenchyme. It was unclear whether functional redundancy between the two genes would preclude a genetic analysis of the roles of Hedgehog signaling in the mouse gut. We show here that the mouse gut has both common and separate requirements for Sonic hedgehog and Indian hedgehog. Both Sonic hedgehog and Indian hedgehog mutant mice show reduced smooth muscle, gut malrotation and annular pancreas. Sonic hedgehog mutants display intestinal transformation of the stomach, duodenal stenosis (obstruction), abnormal innervation of the gut and imperforate anus. Indian hedgehog mutants show reduced epithelial stem cell proliferation and differentiation, together with features typical of Hirschsprung's disease (aganglionic colon). These results show that Hedgehog signals are essential for organogenesis of the mammalian gastrointestinal tract and suggest that mutations in members of this signaling pathway may be involved in human gastrointestinal malformations.


2021 ◽  
pp. 036354652110622
Author(s):  
Yulei Liu ◽  
Xiang-Hua Deng ◽  
Xueying Zhang ◽  
Ting Cong ◽  
Daoyun Chen ◽  
...  

Background: The underlying cellular and molecular mechanisms involved in the development of tendinopathy due to subacromial supraspinatus tendon (SST) impingement and the response to subsequent removal of impingement remain unknown. Purpose: To investigate the involvement of Indian hedgehog (IHH) signaling in the development of SST tendinopathy and the subsequent healing process after the relief of subacromial impingement in a novel mouse shoulder impingement model. Study Design: Controlled laboratory study. Methods: A total of 48 male wild-type C57BL/6 mice were used in this study. Supraspinatus tendinopathy was induced by inserting a microsurgical clip into the subacromial space bilaterally. Eleven mice were sacrificed at 4 weeks after surgery to establish impingement baseline; 24 mice underwent clip removal at 4 weeks after surgery and then were euthanized at 2 or 4 weeks after clip removal. Thirteen mice without surgical intervention were utilized as the control group. All SSTs were evaluated with biomechanical testing; quantitative histomorphometry after staining with hematoxylin and eosin, Alcian blue, and picrosirius red; and immunohistochemical staining (factor VIII, IHH, Patched1 [PTCH1], and glioma-associated oncogene homolog 1 [GLI1]). Results: The mean failure force and stiffness in the 4-week impingement group decreased significantly compared with the control group ( P < .001) and gradually increased at 2 and 4 weeks after clip removal. Histological analysis demonstrated increased cellularity and disorganized collagen fibers in the SST, with higher modified Bonar scores at 4 weeks, followed by gradual improvement after clip removal. The IHH-positive area and PTCH1- and GLI1-positive cell percentages significantly increased after 4 weeks of clip impingement (20.64% vs 2.06%, P < .001; 53.9% vs 28.03%, P = .016; and 30% vs 12.19%, P = .036, respectively) and continuously increased after clip removal. Conclusion: The authors’ findings suggest that the hedgehog signaling pathway and its downstream signaling mediator and target GLI1 may play a role in the development and healing process of rotator cuff tendinopathy due to extrinsic rotator cuff impingement. Clinical Relevance: This study suggests the potential for the hedgehog pathway, together with its downstream targets, as candidates for further study as potential therapeutic targets in the treatment of supraspinatus tendinopathy.


Author(s):  
Shaowei Wang ◽  
Mengbo Zhu ◽  
Xiaochun Wei ◽  
Lei Wei

2009 ◽  
Vol 88 (6) ◽  
pp. 545-550 ◽  
Author(s):  
T. Ochiai ◽  
M. Nagayama ◽  
T. Nakamura ◽  
T. Morrison ◽  
D. Pilchak ◽  
...  

Primary cilia regulate several developmental processes and mediate hedgehog signaling. To study their roles in cranial base development, we created conditional mouse mutants deficient in Polaris, a critical primary cilium component, in cartilage. Mutant post-natal cranial bases were deformed, and their synchondrosis growth plates were disorganized. Expression of Indian hedgehog, Patched-1, collagen X, and MMP-13 was reduced and accompanied by decreases in endochondral bone. Interestingly, there was excessive intramembranous ossification along the perichondrium, accompanied by excessive Patched-1 expression, suggesting that Ihh distribution was wider and responsible for such excessive response. Indeed, expression of heparan sulfate proteoglycans (HS-PGs), normally involved in restricting hedgehog distribution, was barely detectable in mutant synchondroses. Analyses of the data provides further evidence for the essential roles of primary cilia and hedgehog signaling in cranial base development and chondrocyte maturation, and point to a close interdependence between cilia and HS-PGs to delimit targets of hedgehog action in synchondroses.


Sign in / Sign up

Export Citation Format

Share Document