scholarly journals Magnesium Force Fields for OPC Water with Accurate Solvation, Ion-Binding, and Water-Exchange Properties: Successful Transfer from SPC/E

2021 ◽  
Author(s):  
Kara K. Grotz ◽  
Nadine Schwierz

Magnesium plays a vital role in a large variety of biological processes. To model such processes by molecular dynamics simulations, researchers rely on accurate force field parameters for Mg2+ and water. OPC is one of the most promising water models yielding an improved description of biomolecules in water. The aim of this work is to provide force field parameters for Mg2+ that lead to accurate simulation results in combination with OPC water. Using twelve different Mg2+ parameter sets, that were previously optimized with different water models, we systematically assess the transferability to OPC based on a large variety of experimental properties. The results show that the Mg2+ parameters for SPC/E are transferable to OPC and closely reproduce the experimental solvation free energy, radius of the first hydration shell, coordination number, activity derivative, and binding affinity toward the phosphate oxygen on RNA. Two optimal parameter sets are presented: MicroMg yields water exchange in OPC on the microsecond timescale in agreement with experiments. NanoMg yields accelerated exchange on the nanosecond timescale and facilitates the direct observation of ion binding events for enhanced sampling purposes.

2021 ◽  
Author(s):  
Sebastian Falkner ◽  
Nadine Schwierz

Water exchange between the first and second hydration shell is essential for the role of Mg2+ in biochemical processes. In order to provide microscopic insights into the exchange mechanism, we resolve the exchange pathways by all-atom molecular dynamics simulations and transition path sampling. Since the exchange kinetics relies on the choice of the water model and the ionic force field, we systematically investigate the influence of seven different polarizable and non-polarizable water and three different Mg2+ models. In all cases, water exchange can occur either via an indirect or direct mechanism (exchanging molecules occupy different/same position on water octahedron). In addition, the results reveal a crossover from an interchange dissociative (Id) to an associative (Ia) reaction mechanism dependent on the range of the Mg2+-water interaction potential of the respective force field. Standard non-polarizable force fields follow the Id mechanism in agreement with experimental results. By contrast, polarizable and long-ranged non-polarizable force fields follow the Ia mechanism. Our results provide a comprehensive view on the influence of the water model and ionic force field on the exchange dynamics and the foundation to assess the choice of the force field in biomolecular simulations.


RSC Advances ◽  
2014 ◽  
Vol 4 (89) ◽  
pp. 48621-48631 ◽  
Author(s):  
Eleanor R. Turpin ◽  
Sam Mulholland ◽  
Andrew M. Teale ◽  
Boyan B. Bonev ◽  
Jonathan D. Hirst

2012 ◽  
Vol 18 (8) ◽  
pp. 3455-3466 ◽  
Author(s):  
Gül Altınbaş Özpınar ◽  
Frank R. Beierlein ◽  
Wolfgang Peukert ◽  
Dirk Zahn ◽  
Timothy Clark

Sign in / Sign up

Export Citation Format

Share Document