scholarly journals BRPF3 knockdown or inhibition moderately reverses olaparib resistance in high grade serous ovarian carcinoma, but depletion of H3K14 acetylation has no effect

2021 ◽  
Author(s):  
Benjamin G Bitler ◽  
Tomomi M Yamamoto ◽  
Alexandra McMellen ◽  
Hyunmin Kim ◽  
Zachary Levi Watson

Background: PARP inhibitors (PARPi) kill cancer cells by stalling DNA replication and preventing DNA repair, resulting in a critical accumulation of DNA damage. Resistance to PARPi is a growing clinical problem in the treatment of high grade serous ovarian carcinoma (HGSOC). Acetylation of histone H3 lysine 14 (H3K14ac) and associated histone acetyltransferases (HATs) have known functions in DNA repair and replication, but their expression and activities have not been examined in the context of PARPi-resistant HGSOC. Results: Using mass spectrometry profiling of histone modifications, we observed altered H3K14ac enrichment in PARPi-resistant HGSOC cells relative to isogenic PARPi-sensitive lines. By RT-qPCR and RNA-Seq, we also observed altered expression of numerous HATs in PARPi-resistant HGSOC cells and a PARPi-resistant PDX model. Knockdown of HATs only modestly altered PARPi response, although knockdown and inhibition of PCAF significantly increased resistance. Pharmacologic inhibition of HBO1 severely depleted H3K14ac but did not affect PARPi response. However, knockdown and inhibition of BRPF3, which is known to interact in a complex with HBO1, did reduce PARPi resistance. Conclusions: This study demonstrates that severe depletion of H3K14ac does not affect PARPi response in HGSOC. Our data suggest that bromodomain functions of HAT proteins such as PCAF, or accessory proteins such as BRPF3, may play a greater role in PARPi response than acetyltransferase functions.

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Zachary L. Watson ◽  
Tomomi M. Yamamoto ◽  
Alexandra McMellen ◽  
Hyunmin Kim ◽  
Connor J. Hughes ◽  
...  

Abstract Background Euchromatic histone-lysine-N-methyltransferases 1 and 2 (EHMT1/2, aka GLP/G9A) catalyze dimethylation of histone H3 lysine 9 (H3K9me2) and have roles in epigenetic silencing of gene expression. EHMT1/2 also have direct roles in DNA repair and are implicated in chemoresistance in several cancers. Resistance to chemotherapy and PARP inhibitors (PARPi) is a major cause of mortality in high-grade serous ovarian carcinoma (HGSOC), but the contribution of the epigenetic landscape is unknown. Results To identify epigenetic mechanisms of PARPi resistance in HGSOC, we utilized unbiased exploratory techniques, including RNA-Seq and mass spectrometry profiling of histone modifications. Compared to sensitive cells, PARPi-resistant HGSOC cells display a global increase of H3K9me2 accompanied by overexpression of EHMT1/2. EHMT1/2 overexpression was also observed in a PARPi-resistant in vivo patient-derived xenograft (PDX) model. Genetic or pharmacologic disruption of EHMT1/2 sensitizes HGSOC cells to PARPi. Cell death assays demonstrate that EHMT1/2 disruption does not increase PARPi-induced apoptosis. Functional DNA repair assays show that disruption of EHMT1/2 ablates homologous recombination (HR) and non-homologous end joining (NHEJ), while immunofluorescent staining of phosphorylated histone H2AX shows large increases in DNA damage. Propidium iodide staining and flow cytometry analysis of cell cycle show that PARPi treatment increases the proportion of PARPi-resistant cells in S and G2 phases, while cells treated with an EHMT1/2 inhibitor remain in G1. Co-treatment with PARPi and EHMT1/2 inhibitor produces an intermediate phenotype. Immunoblot of cell cycle regulators shows that combined EHMT1/2 and PARP inhibition reduces expression of specific cyclins and phosphorylation of mitotic markers. These data suggest DNA damage and altered cell cycle regulation as mechanisms of sensitization. RNA-Seq of PARPi-resistant cells treated with EHMT1/2 inhibitor showed significant gene expression changes enriched in pro-survival pathways that remain unexplored in the context of PARPi resistance, including PI3K, AKT, and mTOR. Conclusions This study demonstrates that disrupting EHMT1/2 sensitizes HGSOC cells to PARPi, and suggests a potential mechanism through DNA damage and cell cycle dysregulation. RNA-Seq identifies several unexplored pathways that may alter PARPi resistance. Further study of EHMT1/2 and regulated genes will facilitate development of novel therapeutic strategies to successfully treat HGSOC.


2015 ◽  
Vol 139 (1) ◽  
pp. 196
Author(s):  
C. Morse ◽  
B. Norquist ◽  
S. Bernards ◽  
M. Harrell ◽  
K. Agnew ◽  
...  

2013 ◽  
Vol 27 (7) ◽  
pp. 991-1001 ◽  
Author(s):  
Anca Milea ◽  
Sophia HL George ◽  
Donco Matevski ◽  
Haiyan Jiang ◽  
Mary Madunic ◽  
...  

2012 ◽  
Vol 228 (2) ◽  
pp. 204-215 ◽  
Author(s):  
Zhaojian Liu ◽  
Jinsong Liu ◽  
Miguel F Segura ◽  
Changshun Shao ◽  
Peng Lee ◽  
...  

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Jennifer Ducie ◽  
Fanny Dao ◽  
Michael Considine ◽  
Narciso Olvera ◽  
Patricia A. Shaw ◽  
...  

2021 ◽  
pp. canres.1518.2020
Author(s):  
Katie Teng ◽  
Matthew J Ford ◽  
Keerthana Harwalkar ◽  
YuQi Li ◽  
Alain Sarabia Pacis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document