scholarly journals Overcoming a 'forbidden phenotype': The parrot's head supports, propels, and powers tripedal locomotion

2021 ◽  
Author(s):  
Melody W Young ◽  
Edwin Dickinson ◽  
Nicholas D Flaim ◽  
Michael C Granatosky

No vertebrate, living or extinct, is known to have possessed an odd number of limbs. Despite this ″forbidden phenotype″, gaits that utilize odd numbers of limbs (e.g., tripedalism or pentapedalism) have evolved in both avian and mammalian lineages. Tripedal locomotion is commonly employed by parrots during climbing, who utilize their beaks as an additional support. However, it is unclear whether the beak functions simply as a stabilizing hook, or as a propulsive limb. Here, we present data on kinetics of tripedal climbing in six rosy –faced lovebirds (Agapornis rosiecollis). Our findings demonstrate that parrots utilize cyclical tripedal gaits when climbing and the beak and hindlimbs generate comparable propulsive and tangential substrate reaction forces and power. Propulsive and tangential forces generated by the beak are of equal or greater magnitudes to those forces generated by the forelimbs of humans and non –human primates during vertical climbing. We conclude that the feeding apparatus and neck musculature of parrots has been co–opted to function biomechanically as a third limb during vertical climbing. We hypothesize that this exaptation required substantive alterations to the neuromuscular system including enhanced force–generating capabilities of the neck musculature and modifications to limb central pattern generators.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Juan Tian ◽  
Qiang Lu

The octopus arm has attracted many researchers’ interests and became a research hot spot because of its amazing features. Several dynamic models inspired by an octopus arm are presented to realize the structure with a large number of degrees of freedom. The octopus arm is made of a soft material introducing high-dimensionality, nonlinearity, and elasticity, which makes the octopus arm difficult to control. In this paper, three coupled central pattern generators (CPGs) are built and a 2-dimensional dynamic model of the octopus arm is presented to explore possible strategies of the octopus movement control. And the CPGs’ signals treated as activation are added on the ventral, dorsal, and transversal sides, respectively. The effects of the octopus arm are discussed when the parameters of the CPGs are changed. Simulations show that the octopus arm movements are mainly determined by the shapes of three CPGs’ phase diagrams. Therefore, some locomotion modes are supposed to be embedded in the neuromuscular system of the octopus arm. And the octopus arm movements can be achieved by modulating the parameters of the CPGs. The results are beneficial for researchers to understand the octopus movement further.


Author(s):  
Dariusz Grzelczyk ◽  
Olga Szymanowska ◽  
Jan Awrejcewicz

The goal of the study was to perform both kinematic and dynamic simulation of an octopod robot walking on a flat and hard surface. To drive robot legs, different non-linear mechanical oscillators were employed as central pattern generators. Aside from using some well-known oscillators, a new model was proposed. Time series of robot’s kinematic and dynamic locomotion parameters were computed and discussed. Displacement and velocity of the centre of gravity of the robot, ground reaction forces acting on the robot legs, as well as some aspects of energy consumption of a walking robot were analysed to assess the central pattern generators. The obtained kinematic and dynamic parameters showed some advantages of the applied generator. In particular, the gait of the robot was most stable when the robot was driven by the proposed central pattern generator model.


2017 ◽  
Vol 27 (2) ◽  
pp. 40
Author(s):  
Hua WU ◽  
Zaihua RU ◽  
Congying XU ◽  
Xudong GU ◽  
Jianming FU

Author(s):  
Astrid A. Prinz

This chapter begins by defining central pattern generators (CPGs) and proceeds to focus on one of their core components, the timing circuit. After arguing why invertebrate CPGs are particularly useful for the study of neuronal circuit operation in general, the bulk of the chapter then describes basic mechanisms of CPG operation at the cellular, synaptic, and network levels, and how different CPGs combine these mechanisms in various ways. Finally, the chapter takes a semihistorical perspective to discuss whether or not the study of invertebrate CPGs has seen its prime and what it has contributed—and may continue to offer—to a wider understanding of neuronal circuits in general.


2001 ◽  
Vol 42 (4) ◽  
pp. 291-326 ◽  
Author(s):  
Pietro-Luciano Buono ◽  
Martin Golubitsky

2004 ◽  
Vol 58-60 ◽  
pp. 535-540 ◽  
Author(s):  
Roberto Latorre ◽  
Francisco de Borja Rodrı́guez ◽  
Pablo Varona

2008 ◽  
Vol 27 (3-4) ◽  
pp. 423-443 ◽  
Author(s):  
Alexander Sproewitz ◽  
Rico Moeckel ◽  
Jérôme Maye ◽  
Auke Jan Ijspeert

Sign in / Sign up

Export Citation Format

Share Document