scholarly journals Effects of Spatial Heterogeneity on Transmission Potential in Vectorial-Contact Networks: A Comparison of Three Aedes aegypti Control Strategies

2017 ◽  
Author(s):  
Héctor M. Sánchez C. ◽  
John M. Marshall ◽  
Sean L. Wu ◽  
Edgar E. Vallejo

AbstractDengue, chikungunya and zika are all transmitted by the Aedes aegypti mosquito. Despite the strong influence of host spatial distribution and movement patterns on the ability of mosquito vectors to transmit pathogens, there is little understanding how these complex interactions modify the spread of disease in spatially heterogeneous populations. In light of present fears of a worldwide zika epidemic, and failures to eradicate dengue and chikungunya; there is a pressing need to get a better picture of how high-resolution details such as human movement in a small landscape, modify the patterns of transmission of these diseases and how different mosquito-control interventions could be affected by these movements.In this work we use a computational agent-based model (ABM) to simulate mosquito-human interactions in two different levels of spatial heterogeneity, with human movement, and in the presence of three mosquito-control interventions (spatial spraying, the release of Wolbachia-infected mosquitoes and release of insects with dominant lethal gene). To analyse the results from each of these experiments we examined mosquito population dynamics and host to host contact networks that emerged from the distribution of consecutive bites across humans. We then compared results across experiments to understand the differential effectiveness of different interventions in both the presence and absence of spatial heterogeneities, and analysed network measures of epidemiological relevance (degree probability distributions, mean path length, network density and small-worldness).From our experiments we conclude that spatial heterogeneity greatly influences how a pathogen may spread in a host population when mediated by a mosquito vector, and that these important heterogeneities also strongly affect effectiveness of interventions. Finally, we demonstrate that these host to host vectorial-contact networks can provide operationally important information to inform selection of optimal vector-control strategies.Author SummaryMosquito-borne diseases’ transmission patterns arise from the complex interactions between hosts and vector. Because these interactions are influenced by host and vector behaviour, spatial constraints, and other factors they are amongst the most difficult to understand. In this work, we use our computational agent-based model: SoNA3BS; to simulate two spatially different settings in the presence and absence of three different mosquito-control interventions: fogging, the release of Wolbachia-infected mosquitoes and the release of insects with dominant lethal gene. Throughout these simulations, we record mosquito population dynamics and mosquito bites on persons. We then compare mosquito population dynamics to the vectorial-contact networks (that emerge from subsequent mosquito bites between humans) and, after performing these comparisons, we proceeded to show that even when mosquito population sizes are almost equal in both spatial settings, the resulting vectorial-contact networks are radically different. This has profound implications in our understanding of how mosquito-borne diseases spread in human populations and is relevant to the effective use of resources allocated to stop these pathogens from causing more harm in human populations.

2020 ◽  
Vol 21 (4) ◽  
pp. 629-642 ◽  
Author(s):  
Irene Azzali ◽  
Leonardo Vanneschi ◽  
Andrea Mosca ◽  
Luigi Bertolotti ◽  
Mario Giacobini

PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e79276 ◽  
Author(s):  
Lindsay M. Beck-Johnson ◽  
William A. Nelson ◽  
Krijn P. Paaijmans ◽  
Andrew F. Read ◽  
Matthew B. Thomas ◽  
...  

2017 ◽  
Vol 428 ◽  
pp. 98-105 ◽  
Author(s):  
Arndt Telschow ◽  
Florian Grziwotz ◽  
Philip Crain ◽  
Takeshi Miki ◽  
James W. Mains ◽  
...  

2017 ◽  
Vol 421 ◽  
pp. 28-38 ◽  
Author(s):  
L.D. Valdez ◽  
G.J. Sibona ◽  
L.A. Diaz ◽  
M.S. Contigiani ◽  
C.A. Condat

2013 ◽  
Vol 726-731 ◽  
pp. 156-159 ◽  
Author(s):  
Hui Wan

Understanding the population dynamics of mosquitoes is fundamental to the study of the epidemiology of mosquito-borne diseases for the purpose of optimal control and prevention. In this paper, we presented a brief survey for former models for mosquito population and claimed that the effect of limited resource and temperature are important for the population dynamics of mosquito which should be considered in mosquito models.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249811
Author(s):  
Cameron Cook ◽  
Annastashia Blesi ◽  
Samantha Brozak ◽  
Suzanne Lenhart ◽  
Hanna Reed ◽  
...  

In Appalachia, La Crosse virus (LACV) is a leading pediatric arbovirus and public health concern for children under 16 years. LACV is transmitted via the bite of an infected Aedes mosquito. Thus, it is imperative to understand the dynamics of the local vector population in order to assess risk and transmission. Using entomological data collected from Knox County, Tennessee in 2013, we formulate an environmentally-driven system of ordinary differential equations to model mosquito population dynamics over a single season. Further, we include infected compartments to represent LACV transmission within the mosquito population. Findings suggest that the model, with dependence on degree days and accumulated precipitation, can closely describe field data. This model confirms the need to include these environmental variables when planning control strategies.


Sign in / Sign up

Export Citation Format

Share Document