scholarly journals Axons from the Trigeminal Ganglia are the Earliest Afferent Projections to the Mouse Cerebellum

2017 ◽  
Author(s):  
Hassan Marzban ◽  
Maryam Rahimi-Balaei ◽  
Richard Hawkes

ABSTRACTThe first stage standard model for the development of afferent pathways to the cerebellum is that ingrowing axons target the embryonic Purkinje cells (E13-E16 in mice). Perinatally and early postnatal (E18-P15) the climbing fibers translocate to the Purkinje cell dendrites, and as the granular layer develops the mossy fibers translocate from the Purkinje cell somata and synapse with granule cell dendrites. In this report we describe a novel earlier stage in the development. Immunostaining for a neurofilament-associated antigen (NAA) reveals the early axon distributions with remarkable clarity. Axons from the trigeminal system enter the cerebellar primordium as early as embryo age (E)9. By using a combination of axon tract tracing, analysis of neurogenin1 null mice – which do not develop trigeminal ganglia – and mouse embryos maintained in vitro – we show that the first axons to innervate the cerebellar primordium are direct projections from the trigeminal ganglia. The data show that the early trigeminal projections are in situ before the Purkinje cells are born, and double immunostaining for NAA and markers of the different domains in the cerebellar primordium reveal that they first target the cerebellar nuclear neurons of the nuclear transitory zone (E9-E10), and only later (E10-E11) extend collateral branches to the Purkinje cell plate.

1989 ◽  
Vol 9 (10) ◽  
pp. 4545-4549 ◽  
Author(s):  
M Sudol ◽  
C F Kuo ◽  
L Shigemitsu ◽  
A Alvarez-Buylla

To identify the kinds of cells in the brain that express the yes proto-oncogene, we examined chicken brains by using immunofluorescent staining and in situ hybridization. Both approaches showed that the highest level of the yes gene product was in cerebellar Purkinje cells. In addition, we analyzed Purkinje cell degeneration (pcd) mutant mice. The level of yes mRNA in cerebella of pcd mutants was four times lower than that found in cerebella of normal littermates. Our studies point to Purkinje cells as an attractive model for functional studies of the yes protein.


2021 ◽  
Vol 12 ◽  
Author(s):  
Neal H. Barmack ◽  
Vito Enrico Pettorossi

Vestibular and optokinetic space is represented in three-dimensions in vermal lobules IX-X (uvula, nodulus) and hemisphere lobule X (flocculus) of the cerebellum. Vermal lobules IX-X encodes gravity and head movement using the utricular otolith and the two vertical semicircular canals. Hemispheric lobule X encodes self-motion using optokinetic feedback about the three axes of the semicircular canals. Vestibular and visual adaptation of this circuitry is needed to maintain balance during perturbations of self-induced motion. Vestibular and optokinetic (self-motion detection) stimulation is encoded by cerebellar climbing and mossy fibers. These two afferent pathways excite the discharge of Purkinje cells directly. Climbing fibers preferentially decrease the discharge of Purkinje cells by exciting stellate cell inhibitory interneurons. We describe instances adaptive balance at a behavioral level in which prolonged vestibular or optokinetic stimulation evokes reflexive eye movements that persist when the stimulation that initially evoked them stops. Adaptation to prolonged optokinetic stimulation also can be detected at cellular and subcellular levels. The transcription and expression of a neuropeptide, corticotropin releasing factor (CRF), is influenced by optokinetically-evoked olivary discharge and may contribute to optokinetic adaptation. The transcription and expression of microRNAs in floccular Purkinje cells evoked by long-term optokinetic stimulation may provide one of the subcellular mechanisms by which the membrane insertion of the GABAA receptors is regulated. The neurosteroids, estradiol (E2) and dihydrotestosterone (DHT), influence adaptation of vestibular nuclear neurons to electrically-induced potentiation and depression. In each section of this review, we discuss how adaptive changes in the vestibular and optokinetic subsystems of lobule X, inferior olivary nuclei and vestibular nuclei may contribute to the control of balance.


2010 ◽  
Vol 103 (3) ◽  
pp. 1329-1336 ◽  
Author(s):  
Pär Svensson ◽  
Dan-Anders Jirenhed ◽  
Fredrik Bengtsson ◽  
Germund Hesslow

Pavlovian eyeblink conditioning is a useful experimental model for studying adaptive timing, an important aspect of skilled movements. The conditioned response (CR) is precisely timed to occur just before the onset of the expected unconditioned stimulus (US). The timing can be changed immediately, however, by varying parameters of the conditioned stimulus (CS). It has previously been shown that increasing the intensity of a peripheral CS or the frequency of a CS consisting of a train of stimuli to the mossy fibers shortens the latency of the CR. The adaptive timing of behavioral CRs probably reflects the timing of an underlying learned inhibitory response in cerebellar Purkinje cells. It is not known how the latency of this Purkinje cell CR is controlled. We have recorded form Purkinje cells in conditioned decerebrate ferrets while increasing the intensity of a peripheral CS or the frequency of a mossy fiber CS. We observe changes in the timing of the Purkinje cell CR that match the behavioral effects. The results are consistent with the effect of CS parameters on behavioral CR latency being caused by corresponding changes in Purkinje cell CRs. They suggest that synaptic temporal summation may be one of several mechanisms underlying adaptive timing of movements.


1993 ◽  
Vol 122 (5) ◽  
pp. 1053-1065 ◽  
Author(s):  
U Arumäe ◽  
U Pirvola ◽  
J Palgi ◽  
TR Kiema ◽  
K Palm ◽  
...  

We examined the expression of the neurotrophins (NTFs) and their receptor mRNAs in the rat trigeminal ganglion and the first branchial arch before and at the time of maxillary nerve growth. The maxillary nerve appears first at embryonic day (E)10 and reaches the epithelium of the first branchial arch at E12, as revealed by anti-L1 immunohistochemistry. In situ hybridization demonstrates, that at E10-E11, neurotrophin-3 (NT-3) mRNA is expressed mainly in the mesenchyme, but neurotrophin-4 (NT-4) mRNA in the epithelium of the first branchial arch. NGF and brain-derived neurotrophic factor (BDNF) mRNAs start to be expressed in the distal part of the first brachial arch shortly before its innervation by the maxillary nerve. Trigeminal ganglia strongly express the mRNA of trkA at E10 and thereafter. The expression of mRNAs for low-affinity neurotrophin receptor (LANR), trkB, and trkC in trigeminal ganglia is weak at E10, but increases by E11-E12. NT-3, NT-4, and more prominently BDNF, induce neurite outgrowth from explant cultures of the E10 trigeminal ganglia but no neurites are induced by NGF, despite the expression of trkA. By E12, the neuritogenic potency of NGF also appears. The expression of NT-3 and NT-4 and their receptors in the trigeminal system prior to target field innervation suggests that these NTFs have also other functions than being the target-derived trophic factors.


2006 ◽  
Vol 96 (6) ◽  
pp. 3485-3491 ◽  
Author(s):  
Soon-Lim Shin ◽  
Erik De Schutter

Purkinje cells (PCs) integrate all computations performed in the cerebellar cortex to inhibit neurons in the deep cerebellar nuclei (DCN). Simple spikes recorded in vivo from pairs of PCs separated by <100 μm are known to be synchronized with a sharp peak riding on a broad peak, but the significance of this finding is unclear. We show that the sharp peak consists exclusively of simple spikes associated with pauses in firing. The broader, less precise peak was caused by firing-rate co-modulation of faster firing spikes. About 13% of all pauses were synchronized, and these pauses had a median duration of 20 ms. As in vitro studies have reported that synchronous pauses can reliably trigger spikes in DCN neurons, we suggest that the subgroup of spikes causing the sharp peak is important for precise temporal coding in the cerebellum.


2007 ◽  
Vol 97 (4) ◽  
pp. 2590-2604 ◽  
Author(s):  
Bruce E. McKay ◽  
Jordan D. T. Engbers ◽  
W. Hamish Mehaffey ◽  
Grant R. J. Gordon ◽  
Michael L. Molineux ◽  
...  

The contribution of Purkinje cells to cerebellar motor coordination and learning is determined in part by the chronic and acute effects of climbing fiber (CF) afferents. Whereas the chronic effects of CF discharge, such as the depression of conjunctive parallel fiber (PF) inputs, are well established, the acute cellular functions of CF discharge remain incompletely understood. In rat cerebellar slices, we show that CF discharge presented at physiological frequencies substantially modifies the frequency and pattern of Purkinje cell spike output in vitro. Repetitive CF discharge converts a spontaneous trimodal pattern of output characteristic of Purkinje cells in vitro to a more naturalistic nonbursting pattern consisting of spike trains interrupted by short CF-evoked pauses or longer pauses associated with state transitions. All effects of CF discharge could be reproduced in the presence of synaptic blockers by using current injections to simulate complex spike depolarizations, revealing that CF-evoked changes in Purkinje cell output can occur independently of network activation. Rather postsynaptic changes are sufficient to account for the CF-evoked block of trimodal activity and include at least the activation of Ca2+-dependent K+ channels. Furthermore by controlling the frequency of Purkinje cell spike output over three discrete firing levels, CF discharge modulates the gain of Purkinje cell responsiveness to PF inputs in vitro through postsynaptic mechanisms triggered by the complex spike depolarization. The ability for CF discharge to acutely modulate diverse aspects of Purkinje cell output provides important insights into the probable cellular factors contributing to motor disturbances following CF denervation.


1976 ◽  
Vol 2 (5-6) ◽  
pp. 357-362 ◽  
Author(s):  
Ernesto Palacios-Prü ◽  
Laura Palacios ◽  
Rosa V. Mendoza
Keyword(s):  

2013 ◽  
Vol 110 (10) ◽  
pp. 2257-2274 ◽  
Author(s):  
N. H. Barmack ◽  
V. Yakhnitsa

Cerebellar Purkinje cells are excited by two afferent pathways: climbing and mossy fibers. Climbing fibers evoke large “complex spikes” (CSs) that discharge at low frequencies. Mossy fibers synapse on granule cells whose parallel fibers excite Purkinje cells and may contribute to the genesis of “simple spikes” (SSs). Both afferent systems convey vestibular information to folia 9c–10. After making a unilateral labyrinthectomy (UL) in mice, we tested how the discharge of CSs and SSs was changed by the loss of primary vestibular afferent mossy fibers during sinusoidal roll tilt. We recorded from cells identified by juxtacellular neurobiotin labeling. The UL preferentially reduced vestibular modulation of CSs and SSs in folia 8–10 contralateral to the UL. The effects of a UL on Purkinje cell discharge were similar in folia 9c–10, to which vestibular primary afferents project, and in folia 8–9a, to which they do not project, suggesting that vestibular primary afferent mossy fibers were not responsible for the UL-induced alteration of SS discharge. UL also induced reduced vestibular modulation of stellate cell discharge contralateral to the UL. We attribute the decreased modulation to reduced vestibular modulation of climbing fibers. In summary, climbing fibers modulate CSs directly and SSs indirectly through activation of stellate cells. Whereas vestibular primary afferent mossy fibers cannot account for the modulated discharge of SSs or stellate cells, the nonspecific excitation of Purkinje cells by parallel fibers may set an operating point about which the discharges of SSs are sculpted by climbing fibers.


1989 ◽  
Vol 9 (10) ◽  
pp. 4545-4549
Author(s):  
M Sudol ◽  
C F Kuo ◽  
L Shigemitsu ◽  
A Alvarez-Buylla

To identify the kinds of cells in the brain that express the yes proto-oncogene, we examined chicken brains by using immunofluorescent staining and in situ hybridization. Both approaches showed that the highest level of the yes gene product was in cerebellar Purkinje cells. In addition, we analyzed Purkinje cell degeneration (pcd) mutant mice. The level of yes mRNA in cerebella of pcd mutants was four times lower than that found in cerebella of normal littermates. Our studies point to Purkinje cells as an attractive model for functional studies of the yes protein.


Sign in / Sign up

Export Citation Format

Share Document