scholarly journals Biological Sequence Modeling with Convolutional Kernel Networks

2017 ◽  
Author(s):  
Dexiong Chen ◽  
Laurent Jacob ◽  
Julien Mairal

AbstractThe growing number of annotated biological sequences available makes it possible to learn genotype-phenotype relationships from data with increasingly high accuracy. When large quantities of labeled samples are available for training a model, convolutional neural networks can be used to predict the phenotype of unannotated sequences with good accuracy. Unfortunately, their performance with medium- or small-scale datasets is mitigated, which requires inventing new data-efficient approaches. In this paper, we introduce a hybrid approach between convolutional neural networks and kernel methods to model biological sequences. Our method enjoys the ability of convolutional neural networks to learn data representations that are adapted to a specific task, while the kernel point of view yields algorithms that perform significantly better when the amount of training data is small. We illustrate these advantages for transcription factor binding prediction and protein homology detection, and we demonstrate that our model is also simple to interpret, which is crucial for discovering predictive motifs in sequences. The source code is freely available at https://gitlab.inria.fr/dchen/CKN-seq.

2019 ◽  
Vol 35 (18) ◽  
pp. 3294-3302 ◽  
Author(s):  
Dexiong Chen ◽  
Laurent Jacob ◽  
Julien Mairal

Abstract Motivation The growing number of annotated biological sequences available makes it possible to learn genotype-phenotype relationships from data with increasingly high accuracy. When large quantities of labeled samples are available for training a model, convolutional neural networks can be used to predict the phenotype of unannotated sequences with good accuracy. Unfortunately, their performance with medium- or small-scale datasets is mitigated, which requires inventing new data-efficient approaches. Results We introduce a hybrid approach between convolutional neural networks and kernel methods to model biological sequences. Our method enjoys the ability of convolutional neural networks to learn data representations that are adapted to a specific task, while the kernel point of view yields algorithms that perform significantly better when the amount of training data is small. We illustrate these advantages for transcription factor binding prediction and protein homology detection, and we demonstrate that our model is also simple to interpret, which is crucial for discovering predictive motifs in sequences. Availability and implementation Source code is freely available at https://gitlab.inria.fr/dchen/CKN-seq. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Y. A. Lumban-Gaol ◽  
K. A. Ohori ◽  
R. Y. Peters

Abstract. Satellite-Derived Bathymetry (SDB) has been used in many applications related to coastal management. SDB can efficiently fill data gaps obtained from traditional measurements with echo sounding. However, it still requires numerous training data, which is not available in many areas. Furthermore, the accuracy problem still arises considering the linear model could not address the non-relationship between reflectance and depth due to bottom variations and noise. Convolutional Neural Networks (CNN) offers the ability to capture the connection between neighbouring pixels and the non-linear relationship. These CNN characteristics make it compelling to be used for shallow water depth extraction. We investigate the accuracy of different architectures using different window sizes and band combinations. We use Sentinel-2 Level 2A images to provide reflectance values, and Lidar and Multi Beam Echo Sounder (MBES) datasets are used as depth references to train and test the model. A set of Sentinel-2 and in-situ depth subimage pairs are extracted to perform CNN training. The model is compared to the linear transform and applied to two other study areas. Resulting accuracy ranges from 1.3 m to 1.94 m, and the coefficient of determination reaches 0.94. The SDB model generated using a window size of 9x9 indicates compatibility with the reference depths, especially at areas deeper than 15 m. The addition of both short wave infrared bands to the four visible bands in training improves the overall accuracy of SDB. The implementation of the pre-trained model to other study areas provides similar results depending on the water conditions.


Geophysics ◽  
2021 ◽  
pp. 1-45
Author(s):  
Runhai Feng ◽  
Dario Grana ◽  
Niels Balling

Segmentation of faults based on seismic images is an important step in reservoir characterization. With the recent developments of deep-learning methods and the availability of massive computing power, automatic interpretation of seismic faults has become possible. The likelihood of occurrence for a fault can be quantified using a sigmoid function. Our goal is to quantify the fault model uncertainty that is generally not captured by deep-learning tools. We propose to use the dropout approach, a regularization technique to prevent overfitting and co-adaptation in hidden units, to approximate the Bayesian inference and estimate the principled uncertainty over functions. Particularly, the variance of the learned model has been decomposed into aleatoric and epistemic parts. The proposed method is applied to a real dataset from the Netherlands F3 block with two different dropout ratios in convolutional neural networks. The aleatoric uncertainty is irreducible since it relates to the stochastic dependency within the input observations. As the number of Monte-Carlo realizations increases, the epistemic uncertainty asymptotically converges and the model standard deviation decreases, because the variability of model parameters is better simulated or explained with a larger sample size. This analysis can quantify the confidence to use fault predictions with less uncertainty. Additionally, the analysis suggests where more training data are needed to reduce the uncertainty in low confidence regions.


2019 ◽  
Vol 11 (12) ◽  
pp. 1461 ◽  
Author(s):  
Husam A. H. Al-Najjar ◽  
Bahareh Kalantar ◽  
Biswajeet Pradhan ◽  
Vahideh Saeidi ◽  
Alfian Abdul Halin ◽  
...  

In recent years, remote sensing researchers have investigated the use of different modalities (or combinations of modalities) for classification tasks. Such modalities can be extracted via a diverse range of sensors and images. Currently, there are no (or only a few) studies that have been done to increase the land cover classification accuracy via unmanned aerial vehicle (UAV)–digital surface model (DSM) fused datasets. Therefore, this study looks at improving the accuracy of these datasets by exploiting convolutional neural networks (CNNs). In this work, we focus on the fusion of DSM and UAV images for land use/land cover mapping via classification into seven classes: bare land, buildings, dense vegetation/trees, grassland, paved roads, shadows, and water bodies. Specifically, we investigated the effectiveness of the two datasets with the aim of inspecting whether the fused DSM yields remarkable outcomes for land cover classification. The datasets were: (i) only orthomosaic image data (Red, Green and Blue channel data), and (ii) a fusion of the orthomosaic image and DSM data, where the final classification was performed using a CNN. CNN, as a classification method, is promising due to hierarchical learning structure, regulating and weight sharing with respect to training data, generalization, optimization and parameters reduction, automatic feature extraction and robust discrimination ability with high performance. The experimental results show that a CNN trained on the fused dataset obtains better results with Kappa index of ~0.98, an average accuracy of 0.97 and final overall accuracy of 0.98. Comparing accuracies between the CNN with DSM result and the CNN without DSM result for the overall accuracy, average accuracy and Kappa index revealed an improvement of 1.2%, 1.8% and 1.5%, respectively. Accordingly, adding the heights of features such as buildings and trees improved the differentiation between vegetation specifically where plants were dense.


2020 ◽  
Vol 12 (23) ◽  
pp. 3953
Author(s):  
Ashley N. Ellenson ◽  
Joshua A. Simmons ◽  
Greg W. Wilson ◽  
Tyler J. Hesser ◽  
Kristen D. Splinter

Nearshore morphology is a key driver in wave breaking and the resulting nearshore circulation, recreational safety, and nutrient dispersion. Morphology persists within the nearshore in specific shapes that can be classified into equilibrium states. Equilibrium states convey qualitative information about bathymetry and relevant physical processes. While nearshore bathymetry is a challenge to collect, much information about the underlying bathymetry can be gained from remote sensing of the surfzone. This study presents a new method to automatically classify beach state from Argus daytimexposure imagery using a machine learning technique called convolutional neural networks (CNNs). The CNN processed imagery from two locations: Narrabeen, New South Wales, Australia and Duck, North Carolina, USA. Three different CNN models are examined, one trained at Narrabeen, one at Duck, and one trained at both locations. Each model was tested at the location where it was trained in a self-test, and the single-beach models were tested at the location where it was not trained in a transfer-test. For the self-tests, skill (as measured by the F-score) was comparable to expert agreement (CNN F-values at Duck = 0.80 and Narrabeen = 0.59). For the transfer-tests, the CNN model skill was reduced by 24–48%, suggesting the algorithm requires additional local data to improve transferability performance. Transferability tests showed that comparable F-scores (within 10%) to the self-trained cases can be achieved at both locations when at least 25% of the training data is from each site. This suggests that if applied to additional locations, a CNN model trained at one location may be skillful at new sites with limited new imagery data needed. Finally, a CNN visualization technique (Guided-Grad-CAM) confirmed that the CNN determined classifications using image regions (e.g., incised rip channels, terraces) that were consistent with beach state labelling rules.


Aerospace ◽  
2020 ◽  
Vol 7 (12) ◽  
pp. 171
Author(s):  
Anil Doğru ◽  
Soufiane Bouarfa ◽  
Ridwan Arizar ◽  
Reyhan Aydoğan

Convolutional Neural Networks combined with autonomous drones are increasingly seen as enablers of partially automating the aircraft maintenance visual inspection process. Such an innovative concept can have a significant impact on aircraft operations. Though supporting aircraft maintenance engineers detect and classify a wide range of defects, the time spent on inspection can significantly be reduced. Examples of defects that can be automatically detected include aircraft dents, paint defects, cracks and holes, and lightning strike damage. Additionally, this concept could also increase the accuracy of damage detection and reduce the number of aircraft inspection incidents related to human factors like fatigue and time pressure. In our previous work, we have applied a recent Convolutional Neural Network architecture known by MASK R-CNN to detect aircraft dents. MASK-RCNN was chosen because it enables the detection of multiple objects in an image while simultaneously generating a segmentation mask for each instance. The previously obtained F1 and F2 scores were 62.67% and 59.35%, respectively. This paper extends the previous work by applying different techniques to improve and evaluate prediction performance experimentally. The approach uses include (1) Balancing the original dataset by adding images without dents; (2) Increasing data homogeneity by focusing on wing images only; (3) Exploring the potential of three augmentation techniques in improving model performance namely flipping, rotating, and blurring; and (4) using a pre-classifier in combination with MASK R-CNN. The results show that a hybrid approach combining MASK R-CNN and augmentation techniques leads to an improved performance with an F1 score of (67.50%) and F2 score of (66.37%).


2020 ◽  
Vol 12 (7) ◽  
pp. 1092
Author(s):  
David Browne ◽  
Michael Giering ◽  
Steven Prestwich

Scene classification is an important aspect of image/video understanding and segmentation. However, remote-sensing scene classification is a challenging image recognition task, partly due to the limited training data, which causes deep-learning Convolutional Neural Networks (CNNs) to overfit. Another difficulty is that images often have very different scales and orientation (viewing angle). Yet another is that the resulting networks may be very large, again making them prone to overfitting and unsuitable for deployment on memory- and energy-limited devices. We propose an efficient deep-learning approach to tackle these problems. We use transfer learning to compensate for the lack of data, and data augmentation to tackle varying scale and orientation. To reduce network size, we use a novel unsupervised learning approach based on k-means clustering, applied to all parts of the network: most network reduction methods use computationally expensive supervised learning methods, and apply only to the convolutional or fully connected layers, but not both. In experiments, we set new standards in classification accuracy on four remote-sensing and two scene-recognition image datasets.


Sign in / Sign up

Export Citation Format

Share Document