scholarly journals Accurate Determination of Bacterial Abundances in Human Metagenomes Using Full-length 16S Sequencing Reads

2017 ◽  
Author(s):  
Fanny Perraudeau ◽  
Sandrine Dudoit ◽  
James H. Bullard

AbstractDNA sequencing of PCR-amplified marker genes, especially but not limited to the 16S rRNA gene, is perhaps the most common approach for profiling microbial communities. Due to technological constraints of commonly available DNA sequencing, these approaches usually take the form of short reads sequenced from a narrow, targeted variable region, with a corresponding loss of taxonomic resolution relative to the full length marker gene. We use Pacific Biosciences single-molecule, real-time circular consensus sequencing to sequence amplicons spanning the entire length of the 16S rRNA gene. However, this sequencing technology suffers from high sequencing error rate that needs to be addressed in order to take full advantage of the longer sequence. Here, we present a method to model the sequencing error process using a generalized pair hidden Markov chain model and estimate bacterial abundances in microbial samples. We demonstrate, with simulated and real data, that our model and its associated estimation procedure are able to give accurate estimates at the species (or subspecies) level, and is more flexible than existing methods like SImple Non-Bayesian TAXonomy (SINTAX).

Author(s):  
Patrick D Schloss ◽  
Matthew L Jenior ◽  
Charles C. Koumpouras ◽  
Sarah L Westcott ◽  
Sarah K Highlander

Over the past 10 years, microbial ecologists have largely abandoned sequencing 16S rRNA genes by the Sanger sequencing method and have instead adopted highly parallelized sequencing platforms. These new platforms, such as 454 and Illumina's MiSeq, have allowed researchers to obtain millions of high quality, but short sequences. The result of the added sequencing depth has been significant improvements in experimental design. The tradeoff has been the decline in the number of full-length reference sequences that are deposited into databases. To overcome this problem, we tested the ability of the PacBio Single Molecule, Real-Time (SMRT) DNA sequencing platform to generate sequence reads from the 16S rRNA gene. We generated sequencing data from the V4, V3-V5, V1-V3, V1-V5, V1-V6, and V1-V9 variable regions from within the 16S rRNA gene using DNA from a synthetic mock community and natural samples collected from human feces, mouse feces, and soil. The mock community allowed us to assess the actual sequencing error rate and how that error rate changed when different curation methods were applied. We developed a simple method based on sequence characteristics and quality scores to reduce the observed error rate for the V1-V9 region from 0.69 to 0.027%. This error rate is comparable to what has been observed for the shorter reads generated by 454 and Illumina's MiSeq sequencing platforms. Although the per base sequencing cost is still significantly more than that of MiSeq, the prospect of supplementing reference databases with full-length sequences from organisms below the limit of detection from the Sanger approach is exciting.


2016 ◽  
Author(s):  
Patrick D Schloss ◽  
Matthew L Jenior ◽  
Charles C. Koumpouras ◽  
Sarah L Westcott ◽  
Sarah K Highlander

Over the past 10 years, microbial ecologists have largely abandoned sequencing 16S rRNA genes by the Sanger sequencing method and have instead adopted highly parallelized sequencing platforms. These new platforms, such as 454 and Illumina's MiSeq, have allowed researchers to obtain millions of high quality, but short sequences. The result of the added sequencing depth has been significant improvements in experimental design. The tradeoff has been the decline in the number of full-length reference sequences that are deposited into databases. To overcome this problem, we tested the ability of the PacBio Single Molecule, Real-Time (SMRT) DNA sequencing platform to generate sequence reads from the 16S rRNA gene. We generated sequencing data from the V4, V3-V5, V1-V3, V1-V5, V1-V6, and V1-V9 variable regions from within the 16S rRNA gene using DNA from a synthetic mock community and natural samples collected from human feces, mouse feces, and soil. The mock community allowed us to assess the actual sequencing error rate and how that error rate changed when different curation methods were applied. We developed a simple method based on sequence characteristics and quality scores to reduce the observed error rate for the V1-V9 region from 0.69 to 0.027%. This error rate is comparable to what has been observed for the shorter reads generated by 454 and Illumina's MiSeq sequencing platforms. Although the per base sequencing cost is still significantly more than that of MiSeq, the prospect of supplementing reference databases with full-length sequences from organisms below the limit of detection from the Sanger approach is exciting.


Author(s):  
Patrick D Schloss ◽  
Sarah L Westcott ◽  
Matthew L Jenior ◽  
Sarah K Highlander

Over the past 10 years, microbial ecologists have largely abandoned sequencing 16S rRNA genes by the Sanger sequencing method and have instead adopted highly parallelized sequencing platforms. These new platforms, such as 454 and Illumina's MiSeq, have allowed researchers to obtain millions of high quality, but short sequences. These platforms have allowed researchers to significantly improve the design of their experiments. The tradeoff has been the decline in the number of full-length reference sequences that are deposited into databases. To overcome this problem, we tested the ability of the PacBio Single Molecule, Real-Time (SMRT) DNA sequencing platform to generate sequence reads from the 16S rRNA gene. We generated sequencing data from the V4, V3-V5, V1-V3, V1-V6, and V1-V9 variable regions from within the 16S rRNA gene from a synthetic mock community and natural samples collected from human feces, mouse feces, and soil. The synthetic mock community allowed us to assess the actual sequencing error rate and how that error rate changed when different curation methods were applied. We developed a simple method based on sequence characteristics and quality scores to reduce the observed error rate for the V1-V9 region from 2.16% to 0.32%. Unfortunately, this error rate was still 16-times higher than the error rate that has been observed for the shorter reads generated by 454 and Illumina's MiSeq sequencing platforms. Although the longer reads frequently provided better classification, the wider adoption of this approach for 16S rRNA gene sequencing is likely limited by its high sequencing error and low yield of sequencing data relative to the other available platforms.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1869 ◽  
Author(s):  
Patrick D. Schloss ◽  
Matthew L. Jenior ◽  
Charles C. Koumpouras ◽  
Sarah L. Westcott ◽  
Sarah K. Highlander

Over the past 10 years, microbial ecologists have largely abandoned sequencing 16S rRNA genes by the Sanger sequencing method and have instead adopted highly parallelized sequencing platforms. These new platforms, such as 454 and Illumina’s MiSeq, have allowed researchers to obtain millions of high quality but short sequences. The result of the added sequencing depth has been significant improvements in experimental design. The tradeoff has been the decline in the number of full-length reference sequences that are deposited into databases. To overcome this problem, we tested the ability of the PacBio Single Molecule, Real-Time (SMRT) DNA sequencing platform to generate sequence reads from the 16S rRNA gene. We generated sequencing data from the V4, V3–V5, V1–V3, V1–V5, V1–V6, and V1–V9 variable regions from within the 16S rRNA gene using DNA from a synthetic mock community and natural samples collected from human feces, mouse feces, and soil. The mock community allowed us to assess the actual sequencing error rate and how that error rate changed when different curation methods were applied. We developed a simple method based on sequence characteristics and quality scores to reduce the observed error rate for the V1–V9 region from 0.69 to 0.027%. This error rate is comparable to what has been observed for the shorter reads generated by 454 and Illumina’s MiSeq sequencing platforms. Although the per base sequencing cost is still significantly more than that of MiSeq, the prospect of supplementing reference databases with full-length sequences from organisms below the limit of detection from the Sanger approach is exciting.


2014 ◽  
Author(s):  
Catherine Burke ◽  
Aaron E Darling

We describe a method for sequencing full-length 16S rRNA gene amplicons using the high throughput Illumina MiSeq platform. The resulting sequences have about 100-fold higher accuracy than standard Illumina reads and are chimera filtered using information from a single molecule dual tagging scheme that boosts the signal available for chimera detection. We demonstrate that the data provides fine scale phylogenetic resolution not available from Illumina amplicon methods targeting smaller variable regions of the 16S rRNA gene.


Zoosymposia ◽  
2020 ◽  
Vol 17 (1) ◽  
pp. 34-44
Author(s):  
RÜDIGER M. SCHMELZ ◽  
MÅRTEN J. KLINTH ◽  
RACHEL WISDOM ◽  
THOMAS BOLGER

The discovery of a large and flourishing population of Phreodrilidae in terrestrial peatlands in northwest Ireland was surprising on two counts: these oligochaete worms are usually aquatic and most of the species occur in the Southern Hemisphere. The phreodrilids were discovered in a project that targeted Enchytraeidae, therefore methods adapted to the investigation of enchytraeids could be applied, including the study of living animals and properly fixed whole mounts. DNA sequencing was also performed. All worms identified here belong to one species, new to science, and placed in the genus Astacopsidrilus, because of the ventral position of the spermathecal pores and the opening of the female funnels inside the spermathecal vestibule. Astacopsidrilus hibernicus sp. nov. is mainly distinguished by thick segmental cushions of epidermal gland cells on the dorsal side of the posterior body half. Male sexual organs and spermathecae are comparatively small and without the often-observed bizarre modifications common in species of this family. DNA sequencing yielded a fragment of the 16S rRNA gene. This is the first description of a phreodrilid species from Europe; the few previous recordings of this family in Ireland and the United Kingdom had been left unidentified.


F1000Research ◽  
2019 ◽  
Vol 7 ◽  
pp. 1755 ◽  
Author(s):  
Anna Cuscó ◽  
Carlotta Catozzi ◽  
Joaquim Viñes ◽  
Armand Sanchez ◽  
Olga Francino

Background: Profiling the microbiome of low-biomass samples is challenging for metagenomics since these samples are prone to contain DNA from other sources (e.g. host or environment). The usual approach is sequencing short regions of the 16S rRNA gene, which fails to assign taxonomy to genus and species level. To achieve an increased taxonomic resolution, we aim to develop long-amplicon PCR-based approaches using Nanopore sequencing. We assessed two different genetic markers: the full-length 16S rRNA (~1,500 bp) and the 16S-ITS-23S region from the rrn operon (4,300 bp). Methods: We sequenced a clinical isolate of Staphylococcus pseudintermedius, two mock communities and two pools of low-biomass samples (dog skin). Nanopore sequencing was performed on MinION™ using the 1D PCR barcoding kit. Sequences were pre-processed, and data were analyzed using EPI2ME or Minimap2 with rrn database. Consensus sequences of the 16S-ITS-23S genetic marker were obtained using canu. Results: The full-length 16S rRNA and the 16S-ITS-23S region of the rrn operon were used to retrieve the microbiota composition of the samples at the genus and species level. For the Staphylococcus pseudintermedius isolate, the amplicons were assigned to the correct bacterial species in ~98% of the cases with the16S-ITS-23S genetic marker, and in ~68%, with the 16S rRNA gene when using EPI2ME. Using mock communities, we found that the full-length 16S rRNA gene represented better the abundances of a microbial community; whereas, 16S-ITS-23S obtained better resolution at the species level. Finally, we characterized low-biomass skin microbiota samples and detected species with an environmental origin. Conclusions: Both full-length 16S rRNA and the 16S-ITS-23S of the rrn operon retrieved the microbiota composition of simple and complex microbial communities, even from the low-biomass samples such as dog skin. For an increased resolution at the species level, targeting the 16S-ITS-23S of the rrn operon would be the best choice.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1755 ◽  
Author(s):  
Anna Cuscó ◽  
Carlotta Catozzi ◽  
Joaquim Viñes ◽  
Armand Sanchez ◽  
Olga Francino

Background: Profiling the microbiome of low-biomass samples is challenging for metagenomics since these samples often contain DNA from other sources, such as the host or the environment. The usual approach is sequencing specific hypervariable regions of the 16S rRNA gene, which fails to assign taxonomy to genus and species level. Here, we aim to assess long-amplicon PCR-based approaches for assigning taxonomy at the genus and species level. We use Nanopore sequencing with two different markers: full-length 16S rRNA (~1,500 bp) and the whole rrn operon (16S rRNA–ITS–23S rRNA; 4,500 bp). Methods: We sequenced a clinical isolate of Staphylococcus pseudintermedius, two mock communities (HM-783D, Bei Resources; D6306, ZymoBIOMICS™) and two pools of low-biomass samples (dog skin from either the chin or dorsal back), using the MinION™ sequencer 1D PCR barcoding kit. Sequences were pre-processed, and data were analyzed using the WIMP workflow on EPI2ME or Minimap2 software with rrn database. Results: The full-length 16S rRNA and the rrn operon were used to retrieve the microbiota composition at the genus and species level from the bacterial isolate, mock communities and complex skin samples. For the Staphylococcus pseudintermedius isolate, when using EPI2ME, the amplicons were assigned to the correct bacterial species in ~98% of the cases with the rrn operon marker, and in ~68% of the cases with the 16S rRNA gene. In both skin microbiota samples, we detected many species with an environmental origin. In chin, we found different Pseudomonas species in high abundance, whereas in dorsal skin there were more taxa with lower abundances. Conclusions: Both full-length 16S rRNA and the rrn operon retrieved the microbiota composition of simple and complex microbial communities, even from the low-biomass samples such as dog skin. For an increased resolution at the species level, using the rrn operon would be the best choice.


Sign in / Sign up

Export Citation Format

Share Document