scholarly journals Spatial summation in the human fovea: the effect of optical aberrations and fixational eye movements

2018 ◽  
Author(s):  
William S. Tuten ◽  
Robert F. Cooper ◽  
Pavan Tiruveedhula ◽  
Alfredo Dubra ◽  
Austin Roorda ◽  
...  

AbstractPsychophysical inferences about the neural mechanisms supporting spatial vision can be undermined by uncertainties introduced by optical aberrations and fixational eye movements, particularly in fovea where the neuronal grain of the visual system is fine. We examined the effect of these pre-neural factors on photopic spatial summation in the human fovea using a custom adaptive optics scanning light ophthalmoscope that provided control over optical aberrations and retinal stimulus motion. Consistent with previous results, Ricco’s area of complete summation encompassed multiple photoreceptors when measured with ordinary amounts of ocular aberrations and retinal stimulus motion. When both factors were minimized experimentally, summation areas were essentially unchanged, suggesting that foveal spatial summation is limited by post-receptoral neural pooling. We compared our behavioral data to predictions generated with a physiologically-inspired front-end model of the visual system, and were able to capture the shape of the summation curves obtained with and without pre-retinal factors using a single post-receptoral summing filter of fixed spatial extent. Given our data and modeling, neurons in the magnocellular visual pathway, such as parasol ganglion cells, provide a candidate neural correlate of Ricco’s area in the central fovea.

2018 ◽  
Vol 18 (8) ◽  
pp. 6 ◽  
Author(s):  
William S. Tuten ◽  
Robert F. Cooper ◽  
Pavan Tiruveedhula ◽  
Alfredo Dubra ◽  
Austin Roorda ◽  
...  

2007 ◽  
Vol 98 (3) ◽  
pp. 1380-1391 ◽  
Author(s):  
Ronen Segev ◽  
Elad Schneidman ◽  
Joe Goodhouse ◽  
Michael J. Berry

The concerted action of saccades and fixational eye movements are crucial for seeing stationary objects in the visual world. We studied how these eye movements contribute to retinal coding of visual information using the archer fish as a model system. We quantified the animal's ability to distinguish among objects of different sizes and measured its eye movements. We recorded from populations of retinal ganglion cells with a multielectrode array, while presenting visual stimuli matched to the behavioral task. We found that the beginning of fixation, namely the time immediately after the saccade, provided the most visual information about object size, with fixational eye movements, which consist of tremor and drift in the archer fish, yielding only a minor contribution. A simple decoder that combined information from ≤15 ganglion cells could account for the behavior. Our results support the view that saccades impose not just difficulties for the visual system, but also an opportunity for the retina to encode high quality “snapshots” of the environment.


2007 ◽  
Vol 24 (2) ◽  
pp. 217-230 ◽  
Author(s):  
GAËLLE DESBORDES ◽  
MICHELE RUCCI

During visual fixation, small eye movements keep the retinal image continuously in motion. It is known that neurons in the visual system are sensitive to the spatiotemporal modulations of luminance resulting from this motion. In this study, we examined the influence of fixational eye movements on the statistics of neural activity in the macaque's retina during the brief intersaccadic periods of natural visual fixation. The responses of parvocellular (P) and magnocellular (M) ganglion cells in different regions of the visual field were modeled while their receptive fields scanned natural images following recorded traces of eye movements. Immediately after the onset of fixation, wide ensembles of coactive ganglion cells extended over several degrees of visual angle, both in the central and peripheral regions of the visual field. Following this initial pattern of activity, the covariance between the responses of pairs of P and M cells and the correlation between the responses of pairs of M cells dropped drastically during the course of fixation. Cell responses were completely uncorrelated by the end of a typical 300-ms fixation. This dynamic spatial decorrelation of retinal activity is a robust phenomenon independent of the specifics of the model. We show that it originates from the interaction of three factors: the statistics of natural scenes, the small amplitudes of fixational eye movements, and the temporal sensitivities of ganglion cells. These results support the hypothesis that fixational eye movements, by shaping the statistics of retinal activity, are an integral component of early visual representations.


2015 ◽  
Vol 112 (10) ◽  
pp. 3110-3115 ◽  
Author(s):  
Irina Yonit Segal ◽  
Chen Giladi ◽  
Michael Gedalin ◽  
Michele Rucci ◽  
Mor Ben-Tov ◽  
...  

Under natural viewing conditions the input to the retina is a complex spatiotemporal signal that depends on both the scene and the way the observer moves. It is commonly assumed that the retina processes this input signal efficiently by taking into account the statistics of the natural world. It has recently been argued that incessant microscopic eye movements contribute to this process by decorrelating the input to the retina. Here we tested this theory by measuring the responses of the salamander retina to stimuli replicating the natural input signals experienced by the retina in the presence and absence of fixational eye movements. Contrary to the predictions of classic theories of efficient encoding that do not take behavior into account, we show that the response characteristics of retinal ganglion cells are not sufficient in themselves to disrupt the broad correlations of natural scenes. Specifically, retinal ganglion cells exhibited strong and extensive spatial correlations in the absence of fixational eye movements. However, the levels of correlation in the neural responses dropped in the presence of fixational eye movements, resulting in effective decorrelation of the channels streaming information to the brain. These observations confirm the predictions that microscopic eye movements act to reduce correlations in retinal responses and contribute to visual information processing.


2021 ◽  
Vol 118 (23) ◽  
pp. e2100126118
Author(s):  
Cherlyn J. Ng ◽  
Randolph Blake ◽  
Martin S. Banks ◽  
Duje Tadin ◽  
Geunyoung Yoon

Stereovision is the ability to perceive fine depth variations from small differences in the two eyes’ images. Using adaptive optics, we show that even minute optical aberrations that are not clinically correctable, and go unnoticed in everyday vision, can affect stereo acuity. Hence, the human binocular system is capable of using fine details that are not experienced in everyday vision. Interestingly, stereo acuity varied considerably across individuals even when they were provided identical perfect optics. We also found that individuals’ stereo acuity is better when viewing with their habitual optics rather than someone else’s (better) optics. Together, these findings suggest that the visual system compensates for habitual optical aberrations through neural adaptation and thereby optimizes stereovision uniquely for each individual. Thus, stereovision is limited by small optical aberrations and by neural adaptation to one’s own optics.


2021 ◽  
Author(s):  
Norick R Bowers ◽  
Josselin Gautier ◽  
Samantha Lin ◽  
Austin Roorda

Human fixational eye movements are so small and precise that they require high-speed, accurate tools to fully reveal their properties and functional roles. Where the fixated image lands on the retina and how it moves for different levels of visually demanding tasks is the subject of the current study. An Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO) was used to image, track and present Maltese cross, disk, concentric circles, Vernier and tumbling-E letter fixation targets to healthy subjects. During these different passive (static) or active (discriminating) fixation tasks under natural eye motion, the landing position of the target on the retina was tracked in space and time over the retinal image directly. We computed both the eye motion and the exact trajectory of the fixated target's motion over the retina. We confirmed that compared to passive fixation, active tasks elicited a partial inhibition of microsaccades, leading to longer drifts periods compensated by larger corrective saccades. Consequently the fixation stability during active tasks was larger overall than during passive tasks. The preferred retinal locus of fixation was the same for each task and did not coincide with the location of the peak cone density.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Talora L. Martin ◽  
Jordan Murray ◽  
Kiran Garg ◽  
Charles Gallagher ◽  
Aasef G. Shaikh ◽  
...  

AbstractWe evaluated the effects of strabismus repair on fixational eye movements (FEMs) and stereopsis recovery in patients with fusion maldevelopment nystagmus (FMN) and patients without nystagmus. Twenty-one patients with strabismus, twelve with FMN and nine without nystagmus, were tested before and after strabismus repair. Eye-movements were recorded during a gaze-holding task under monocular viewing conditions. Fast (fixational saccades and quick phases of nystagmus) and slow (inter-saccadic drifts and slow phases of nystagmus) FEMs and bivariate contour ellipse area (BCEA) were analyzed in the viewing and non-viewing eye. Strabismus repair improved the angle of strabismus in subjects with and without FMN, however patients without nystagmus were more likely to have improvement in stereoacuity. The fixational saccade amplitudes and intersaccadic drift velocities in both eyes decreased after strabismus repair in subjects without nystagmus. The slow phase velocities were higher in patients with FMN compared to inter-saccadic drifts in patients without nystagmus. There was no change in the BCEA after surgery in either group. In patients without nystagmus, the improvement of the binocular function (stereopsis), as well as decreased fixational saccade amplitude and intersaccadic drift velocity, could be due, at least partially, to central adaptive mechanisms rendered possible by surgical realignment of the eyes. The absence of improvement in patients with FMN post strabismus repair likely suggests the lack of such adaptive mechanisms in patients with early onset infantile strabismus. Assessment of fixation eye movement characteristics can be a useful tool to predict functional improvement post strabismus repair.


Author(s):  
Christian Wolf ◽  
Markus Lappe

AbstractHumans and other primates are equipped with a foveated visual system. As a consequence, we reorient our fovea to objects and targets in the visual field that are conspicuous or that we consider relevant or worth looking at. These reorientations are achieved by means of saccadic eye movements. Where we saccade to depends on various low-level factors such as a targets’ luminance but also crucially on high-level factors like the expected reward or a targets’ relevance for perception and subsequent behavior. Here, we review recent findings how the control of saccadic eye movements is influenced by higher-level cognitive processes. We first describe the pathways by which cognitive contributions can influence the neural oculomotor circuit. Second, we summarize what saccade parameters reveal about cognitive mechanisms, particularly saccade latencies, saccade kinematics and changes in saccade gain. Finally, we review findings on what renders a saccade target valuable, as reflected in oculomotor behavior. We emphasize that foveal vision of the target after the saccade can constitute an internal reward for the visual system and that this is reflected in oculomotor dynamics that serve to quickly and accurately provide detailed foveal vision of relevant targets in the visual field.


Sign in / Sign up

Export Citation Format

Share Document