scholarly journals Optics and neural adaptation jointly limit human stereovision

2021 ◽  
Vol 118 (23) ◽  
pp. e2100126118
Author(s):  
Cherlyn J. Ng ◽  
Randolph Blake ◽  
Martin S. Banks ◽  
Duje Tadin ◽  
Geunyoung Yoon

Stereovision is the ability to perceive fine depth variations from small differences in the two eyes’ images. Using adaptive optics, we show that even minute optical aberrations that are not clinically correctable, and go unnoticed in everyday vision, can affect stereo acuity. Hence, the human binocular system is capable of using fine details that are not experienced in everyday vision. Interestingly, stereo acuity varied considerably across individuals even when they were provided identical perfect optics. We also found that individuals’ stereo acuity is better when viewing with their habitual optics rather than someone else’s (better) optics. Together, these findings suggest that the visual system compensates for habitual optical aberrations through neural adaptation and thereby optimizes stereovision uniquely for each individual. Thus, stereovision is limited by small optical aberrations and by neural adaptation to one’s own optics.

2021 ◽  
Author(s):  
Cherlyn J Ng ◽  
Randolph Blake ◽  
Martin S Banks ◽  
Duje Tadin ◽  
Geunyoung Yoon

AbstractStereovision is the ability to perceive fine depth variations from small differences in the two eyes’ images. Using adaptive optics, we show that even minute optical aberrations that are not clinically correctable, and go unnoticed in everyday vision, can affect stereo acuity. Hence, the human binocular system is capable of using unnaturally fine details that are not encountered in everyday vision. More importantly, stereoacuity was still considerably variable even with perfect optics. This variability can be attributed to neural adaptation. Our visual system tries to compensate for these aberrations through neural adaptation that optimizes stereovision when viewing stimuli through one’s habitual optics. However, the same adaptation becomes ineffective when the optics are changed, even if improved. Beyond optical imperfections, we show that stereovision is limited by neural adaptation to one’s own optics.Significance statementHumans, and animals with front-facing eyes, view the world from slightly different vantage points. This creates small differences in the left and right images that can be utilized for fine depth perception (stereovision). Retinal images are also subject to imperfections that are often different in the optics of the two eyes. Using advanced optical correction techniques, we show that even the smallest imperfections that escape clinical detection affect stereovision. We also find that neural processes become adapted to a person’s own optics. Hence, stereovision is directly impacted by the optics of the eyes, and indirectly via neural adaptation. Since the optics change over the lifespan, our results imply that the adult binocular system is adaptable with possibilities for binocular rehabilitation.


ISRN Optics ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Enrique Josua Fernández

A revision of the current state-of-the-art adaptive optics technology for visual sciences is provided. The human eye, as an optical system able to generate images onto the retina, exhibits optical aberrations. Those are continuously changing with time, and they are different for every subject. Adaptive optics is the technology permitting the manipulation of the aberrations, and eventually their correction. Across the different applications of adaptive optics, the current paper focuses on visual simulation. These systems are capable of manipulating the ocular aberrations and simultaneous visual testing though the modified aberrations on real eyes. Some applications of the visual simulators presented in this work are the study of the neural adaptation to the aberrations, the influence of aberrations on accommodation, and the recent development of binocular adaptive optics visual simulators allowing the study of stereopsis.


2018 ◽  
Author(s):  
William S. Tuten ◽  
Robert F. Cooper ◽  
Pavan Tiruveedhula ◽  
Alfredo Dubra ◽  
Austin Roorda ◽  
...  

AbstractPsychophysical inferences about the neural mechanisms supporting spatial vision can be undermined by uncertainties introduced by optical aberrations and fixational eye movements, particularly in fovea where the neuronal grain of the visual system is fine. We examined the effect of these pre-neural factors on photopic spatial summation in the human fovea using a custom adaptive optics scanning light ophthalmoscope that provided control over optical aberrations and retinal stimulus motion. Consistent with previous results, Ricco’s area of complete summation encompassed multiple photoreceptors when measured with ordinary amounts of ocular aberrations and retinal stimulus motion. When both factors were minimized experimentally, summation areas were essentially unchanged, suggesting that foveal spatial summation is limited by post-receptoral neural pooling. We compared our behavioral data to predictions generated with a physiologically-inspired front-end model of the visual system, and were able to capture the shape of the summation curves obtained with and without pre-retinal factors using a single post-receptoral summing filter of fixed spatial extent. Given our data and modeling, neurons in the magnocellular visual pathway, such as parasol ganglion cells, provide a candidate neural correlate of Ricco’s area in the central fovea.


Author(s):  
Fangrong Hu ◽  
Jun Yao ◽  
Chuankai Qiu ◽  
Dajia Wang

In this paper, a MEMS mirror actuated by an electrostatic repulsive force has been proposed and analyzed. The mirror consists of four U-shape springs, a fixed bottom electrode and a movable top electrode, there are many comb fingers on the edges of both electrodes. When the voltage is applied to the top and bottom electrodes, an asymmetric electric field is generated to the top movable fingers and springs, thus a net electrostatic force is produced to move the top plate out of plane. This designed micro-mirror is different from conventional MDM based on electrostatic-attractive-force, which is restricted by one-third thickness of the sacrificial layer for the pull-in phenomenon. The characteristic of this MDM has been analyzed, the result shows that the resonant frequency of the first mode is 8 kHz, and the stroke reaches 10μm at 200V, a MDM with large strokes can be realized for the application of adaptive optics in optical aberrations correction.


2021 ◽  
Vol 178 ◽  
pp. 100-111
Author(s):  
Gareth D. Hastings ◽  
Alexander W. Schill ◽  
Chuan Hu ◽  
Daniel R. Coates ◽  
Raymond A. Applegate ◽  
...  

2020 ◽  
Author(s):  
N Vladimirov ◽  
F Preusser ◽  
J Wisniewski ◽  
Z Yaniv ◽  
RA Desai ◽  
...  

AbstractLight-sheet microscopy has become one of the primary tools for imaging live developing organisms because of its high speed, low phototoxicity, and optical sectioning capabilities. Detection from multiple sides (multi-view imaging) additionally allows nearly isotropic resolution via computational merging of the views. However, conventional light-sheet microscopes require that the sample is suspended in a gel to allow optical access from two or more sides. At the same time, the use of microfluidic devices is highly desirable for many experiments, but geometric constrains and strong optical aberrations caused by the coverslip titled relative to objectives make the use of multi-view lightsheet challenging for microfluidics.In this paper we describe the use of adaptive optics (AO) to enable multi-view light-sheet microscopy in such microfluidic setup by correcting optical aberrations introduced by the tilted coverslip. The optimal shape of deformable mirror is computed by an iterative stochastic gradient-descent algorithm that optimizes PSF in two orthogonal planes simultaneously. Simultaneous AO correction in two optical arms is achieved via a knife-edge mirror that splits excitation path and combines the detection path.We characterize the performance of this novel microscope setup and, by dual-view light-sheet imaging of C.elegans inside a microfluidic channel, demonstrate a drastic improvement of image quality due to AO and dual-view reconstruction. Our microscope design allows multi-view light-sheet microscopy with microfluidic devices for precisely controlled experimental conditions and high-content screening.


2019 ◽  
Author(s):  
Aurélien Barbotin ◽  
Silvia Galiani ◽  
Iztok Urbančič ◽  
Christian Eggeling ◽  
Martin Booth

Fluorescence correlation spectroscopy in combination with super-resolution stimulated emission depletion microscopy (STED-FCS) is a powerful tool to investigate molecular diffusion with sub-diffraction resolution. It has been of particular use for investigations of two dimensional systems like cell membranes, but has so far seen very limited applications to studies of three-dimensional diffusion. One reason for this is the extreme sensitivity of the axial (3D) STED depletion pattern to optical aberrations. We present here an adaptive optics-based correction method that compensates for these aberrations and allows STED-FCS measurements in the cytoplasm of living cells.


2020 ◽  
Author(s):  
Ruizhe Lin ◽  
Edward T. Kipreos ◽  
Jie Zhu ◽  
Chang Hyun Khang ◽  
Peter Kner

AbstractStructured Illumination Microscopy enables live imaging with resolutions of ~120 nm. Unfortunately, optical aberrations can lead to loss of resolution and artifacts in Structured Illumination Microscopy rendering the technique unusable in samples thicker than a single cell. Here we report on the combination of Adaptive Optics and Structured Illumination Microscopy enabling imaging with 140 nm lateral and 585 nm axial resolution in tissue culture cells, C. elegans, and rice blast fungus. We demonstrate that AO improves resolution and reduces artifacts, making full 3D SIM possible in thicker samples.


2021 ◽  
Author(s):  
Jakub Czuchnowski ◽  
Robert Prevedel

AbstractAll-optical ultrasound detection bears a number of unique advantages for photoacoustic tomography, including the ability for high resolution sampling of the acoustic field and its compatibility with a wide variety of other optical modalities. However, optical schemes based on miniaturized cavities are sensitive to optical aberrations as well as manufacturing-induced cavity imperfections which degrade sensor sensitivity and deteriorate photoacoustic image quality. Here we present an experimental method based on adaptive optics that is capable of enhancing the overall sensitivity of Fabry-Pérot based photoacoustic sensors. We experimentally observe clear improvements in photoacoustic signal detection as well as overall image quality after photoacoustic tomography reconstructions when applied to mammalian tissues in vivo.


Sign in / Sign up

Export Citation Format

Share Document