scholarly journals Novel organelle anion channels formed by chromogranin B drive normal granule maturation in endocrine cells

2018 ◽  
Author(s):  
Gaya Yadav ◽  
Hui Zheng ◽  
Qing Yang ◽  
Lauren Douma ◽  
Mani Annamalai ◽  
...  

All endocrine cells need an anion conductance for maturation of secretory granules. Identity of this family of anion channels has been elusive for forty years. We now show that a family of granule proteins, CHGB, serves the long-sought conductance. CHGB interacts with membranes through two amphipathic helices, and forms a chloride channel with a large conductance and high anion selectivity. Fast kinetics and high cooperativity suggest that CHGB tetramerizes to form a functional channel. Nonconducting mutants separate CHGB channel function in granule maturation from its role in granule biogenesis. In neuroendocrine cells, CHGB channel and a H+-ATPase drive normal insulin maturation inside or catecholamine loading into secretory granules. Tight membrane-association of CHGB after exocytotic release of secretory granules separates its intracellular functions from the extracellular functions accomplished by its proteolytic peptides. CHGB-null mice show impairment of granule acidification in pancreatic beta-cells due to lack of anion conductance. These findings together support that the phylogenetically conserved CHGB proteins constitute a fifth family of chloride channels that function in various endocrine cells.

2019 ◽  
Author(s):  
Gaya P. Yadav ◽  
Haiyuan Wang ◽  
Joke Ouwendijk ◽  
Mani Annamalai ◽  
Stephen Cross ◽  
...  

ABSTRACTRegulated secretion serves responses to specific stimuli in eukaryotes. An anion conductance was found essential for maturation and acidification of secretory granules four decades ago, but its genetic identity was unknown. We now demonstrate that chromogranin B (CHGB), an obligate granule protein, constitutes the long-sought anion channel. High-pressure freezing immuno-electron microscopy and biochemical assays showed native CHGB in close proximity to secretory granule membranes, and its membrane-bound and soluble forms both reconstituted Cl- channels. Release of secretory granules delivered CHGB clusters to plasma membranes, which dominate whole-cell anion conductance. Intragranular pH measurements and cargo maturation assays found that CHGB channels supported proinsulin - insulin conversion and dopamine-loading in neuroendocrine cells. β-cells from Chgb-/- mice exhibited significant granule deacidification, accounting for hyperproinsulinemia, altered glucose-tolerance response and lower dopamine concentration in chromaffin granules in these animals. Membrane insertion of well-conserved CHGB is thus indispensable for granule maturation in exocrine, endocrine and neuronal cells.HighlightsNative CHGB is amphipathic and distributes in the lumen and membranes of secretory granules with contrastingly different destinies and functions.Native CHGB, once delivered to cell surface via granule exocytosis, dominates anion conductance in plasma membranes.CHGB channels facilitate granule acidification and cargo maturation in cultured and primary neuroendocrine cells.CHGB channels from bovine, rat and mouse cells all serve the long-missing, intra-organellar anion shunt pathway in the secretory granules for regulated secretion.


2018 ◽  
Vol 1 (5) ◽  
pp. e201800139 ◽  
Author(s):  
Gaya P Yadav ◽  
Hui Zheng ◽  
Qing Yang ◽  
Lauren G Douma ◽  
Linda B Bloom ◽  
...  

Regulated secretion is an intracellular pathway that is highly conserved from protists to humans. Granin family proteins were proposed to participate in the biogenesis, maturation and release of secretory granules in this pathway. However, the exact molecular mechanisms underlying the intracellular functions of the granin family proteins remain unclear. Here, we show that chromogranin B (CHGB), a secretory granule protein, inserts itself into membrane and forms a chloride-conducting channel. CHGB interacts strongly with phospholipid membranes through two amphipathic α helices. At a high local concentration, CHGB insertion in membrane causes significant bilayer remodeling, producing protein-coated nanoparticles and nanotubules. Fast kinetics and high cooperativity for anion efflux from CHGB vesicles suggest that CHGB tetramerizes to form a functional channel with a single-channel conductance of ∼125 pS (150/150 mM Cl−). The CHGB channel is sensitive to an anion channel blocker and exhibits higher anion selectivity than the other six known families of Cl−channels. Our data suggest that the CHGB subfamily of granin proteins forms a new family of organelle chloride channels.


2002 ◽  
Vol 22 (15) ◽  
pp. 5518-5526 ◽  
Author(s):  
Seiji Torii ◽  
Shengli Zhao ◽  
Zhaohong Yi ◽  
Toshiyuki Takeuchi ◽  
Tetsuro Izumi

ABSTRACT The molecular mechanism for the regulated exocytosis of dense-core granules in endocrine cells remains relatively uncharacterized compared to that of synaptic vesicles in neurons. A novel set of Rab and its effector, Rab27a/granuphilin, which is localized on insulin granules in pancreatic beta cells, was recently identified. Here we demonstrate that granuphilin directly binds to syntaxin 1a on the plasma membrane, and this interaction is regulated by Rab27a. Granuphilin shows affinity to syntaxin 1a with a closed conformation but not to mutant syntaxin 1a, which adopts an open conformation constitutively. Overexpression of granuphilin significantly enhances basal insulin secretion but profoundly inhibits high K+-induced insulin secretion. The effect of granuphilin on insulin secretion was impaired by its mutation that disrupts the binding to either Rab27a or syntaxin 1a. Thus, granuphilin is the first regulator in the exocytotic pathway that functions by directly connecting two critical vesicle transport proteins, Rab and SNARE.


1991 ◽  
Vol 115 (6) ◽  
pp. 1505-1519 ◽  
Author(s):  
E Chanat ◽  
W B Huttner

Regulated secretory proteins are thought to be sorted in the trans-Golgi network (TGN) via selective aggregation. The factors responsible for this aggregation are unknown. We show here that two widespread regulated secretory proteins, chromogranin B and secretogranin II (granins), remain in an aggregated state when TGN vesicles from neuroendocrine cells (PC12) are permeabilized at pH 6.4 in 1-10 mM calcium, conditions believed to exist in this compartment. Permeabilization of immature secretory granules under these conditions allowed the recovery of electron dense cores. The granin aggregates in the TGN largely excluded glycosaminoglycan chains which served as constitutively secreted bulk flow markers. The low pH, high calcium milieu was sufficient to induce granin aggregation in the RER. In the TGN of pituitary GH4C1 cells, the proportion of granins conserved as aggregates was higher upon hormonal treatment known to increase secretory granule formation. Our data suggest that a decrease in pH and an increase in calcium are sufficient to trigger the selective aggregation of the granins in the TGN, segregating them from constitutive secretory proteins.


2003 ◽  
Vol 51 (2) ◽  
pp. 227-238 ◽  
Author(s):  
Yuko Sakai ◽  
Masahiro Hosaka ◽  
Yoshiki Hira ◽  
Tatsuo Harumi ◽  
Yoshiyuki Ohsawa ◽  
...  

Secretogranin III (SgIII) is one of the acidic secretory proteins, designated as granins, which are specifically expressed in neuronal and endocrine cells. To clarify its precise distribution in the anterior lobe of the rat pituitary gland, we raised a polyclonal antiserum against rat SgIII for immunocytochemical analyses. By immunohistochemistry using semithin sections, positive signals for SgIII were detected intensely in mammotropes and thyrotropes, moderately in gonadotropes and corticotropes, but not in somatotropes. The distribution pattern of SgIII in the pituitary gland was similar to that of chromogranin B (CgB), also of the granin protein family, suggesting that the expressions of these two granins are regulated by common mechanisms. The localization of SgIII in endocrine cells was confirmed by immunoelectron microscopy. In particular, secretory granules of mammotropes and thyrotropes were densely and preferentially co-labeled for SgIII and CgB in their periphery. Moreover, positive signals for SgIII were occasionally found in cells containing both prolactin and TSH in secretory granules. These lines of evidence suggest that SgIII and CgB are closely associated with the secretory granule membrane and that this membrane association might contribute to gathering and anchoring of other soluble constituents to the secretory granule membrane.


2002 ◽  
Vol 13 (10) ◽  
pp. 3388-3399 ◽  
Author(s):  
Masahiro Hosaka ◽  
Tsuyoshi Watanabe ◽  
Yuko Sakai ◽  
Yasuo Uchiyama ◽  
Toshiyuki Takeuchi

Chromogranin A (CgA) is transported restrictedly to secretory granules in neuroendocrine cells. In addition to pH- and Ca2+-dependent aggregation, CgA is known to bind to a number of vesicle matrix proteins. Because the binding-prone property of CgA with secretory proteins may be essential for its targeting to secretory granules, we screened its binding partner proteins using a yeast two-hybrid system. We found that CgA bound to secretogranin III (SgIII) by specific interaction both in vitro and in endocrine cells. Localization analysis showed that CgA and SgIII were coexpressed in pituitary and pancreatic endocrine cell lines, whereas SgIII was not expressed in the adrenal glands and PC12 cells. Immunoelectron microscopy demonstrated that CgA and SgIII were specifically colocalized in large secretory granules in male rat gonadotropes, which possess large-type and small-type granules. An immunocytochemical analysis revealed that deletion of the binding domain (CgA 48–111) for SgIII missorted CgA to the constitutive pathway, whereas deletion of the binding domain (SgIII 214–373) for CgA did not affect the sorting of SgIII to the secretory granules in AtT-20 cells. These findings suggest that CgA localizes with SgIII by specific binding in secretory granules in SgIII-expressing pituitary and pancreatic endocrine cells, whereas other mechanisms are likely to be responsible for CgA localization in secretory granules of SgIII-lacking adrenal chromaffin cells and PC12 cells.


e-Neuroforum ◽  
2017 ◽  
Vol 23 (4) ◽  
Author(s):  
Jens Rettig ◽  
David R. Stevens

AbstractThe release of neurotransmitters at synapses belongs to the most important processes in the central nervous system. In the last decades much has been learned about the molecular mechanisms which form the basis for this fundamental process. Highly regulated exocytosis, based on the SNARE (soluble N-ethylmaleimide-sensitive attachment protein receptor) complex and its regulatory molecules is the signature specialization of the nervous system and is shared by neurons and neuroendocrine cells. Cells of the immune system use a similar mechanism to release cytotoxic materials from secretory granules at contacts with virally or bacterially infected cells or cancer cells, in order to remove these threats. These contact zones have been termed immunological synapses in reference to the highly specific targeted exocytosis of effector molecules. Recent findings indicate that mutations in SNARE or SNARE-interacting proteins are the basis of a number of devastating immunological diseases. While SNARE complexes are ubiquitous and mediate a wide variety of membrane fusion events it is surprising that in many cases the SNARE proteins involved in immunological synapses are the same molecules which mediate regulated exocytosis of transmitters and hormones in neurons and neuroendocrine cells. These similarities raise the possibility that results obtained at immunological synapses may be applicable, in particular in the area of presynaptic function, to neuronal synapses. Since immunological synapses (IS) are assembled and disassembled in about a half an hour, the use of immune cells isolated from human blood allows not only the study of the molecular mechanisms of synaptic transmission in human cells, but is particularly suited to the examination of the assembly and disassembly of these “synapses” via live imaging. In this overview we discuss areas of similarity between synapses of the nervous and immune systems and in the process will refer to results of our experiments of the last few years.


2006 ◽  
Vol 173 (2) ◽  
pp. 241-251 ◽  
Author(s):  
Malika Ahras ◽  
Grant P. Otto ◽  
Sharon A. Tooze

In neuroendocrine PC12 cells, immature secretory granules (ISGs) mature through homotypic fusion and membrane remodeling. We present evidence that the ISG-localized synaptotagmin IV (Syt IV) is involved in ISG maturation. Using an in vitro homotypic fusion assay, we show that the cytoplasmic domain (CD) of Syt IV, but not of Syt I, VII, or IX, inhibits ISG homotypic fusion. Moreover, Syt IV CD binds specifically to ISGs and not to mature secretory granules (MSGs), and Syt IV binds to syntaxin 6, a SNARE protein that is involved in ISG maturation. ISG homotypic fusion was inhibited in vivo by small interfering RNA–mediated depletion of Syt IV. Furthermore, the Syt IV CD, as well as Syt IV depletion, reduces secretogranin II (SgII) processing by prohormone convertase 2 (PC2). PC2 is found mostly in the proform, suggesting that activation of PC2 is also inhibited. Granule formation, and the sorting of SgII and PC2 from the trans-Golgi network into ISGs and MSGs, however, is not affected. We conclude that Syt IV is an essential component for secretory granule maturation.


2012 ◽  
Vol 23 (22) ◽  
pp. 4444-4455 ◽  
Author(s):  
Flora Brozzi ◽  
Sophie Lajus ◽  
Frederique Diraison ◽  
Shavanthi Rajatileka ◽  
Katy Hayward ◽  
...  

Myosin- and Rab-interacting protein (MyRIP), which belongs to the protein kinase A (PKA)–anchoring family, is implicated in hormone secretion. However, its mechanism of action is not fully elucidated. Here we investigate the role of MyRIP in myosin Va (MyoVa)-dependent secretory granule (SG) transport and secretion in pancreatic beta cells. These cells solely express the brain isoform of MyoVa (BR-MyoVa), which is a key motor protein in SG transport. In vitro pull-down, coimmunoprecipitation, and colocalization studies revealed that MyRIP does not interact with BR-MyoVa in glucose-stimulated pancreatic beta cells, suggesting that, contrary to previous notions, MyRIP does not link this motor protein to SGs. Glucose-stimulated insulin secretion is augmented by incretin hormones, which increase cAMP levels and leads to MyRIP phosphorylation, its interaction with BR-MyoVa, and phosphorylation of the BR-MyoVa receptor rabphilin-3A (Rph-3A). Rph-3A phosphorylation on Ser-234 was inhibited by small interfering RNA knockdown of MyRIP, which also reduced cAMP-mediated hormone secretion. Demonstrating the importance of this phosphorylation, nonphosphorylatable and phosphomimic Rph-3A mutants significantly altered hormone release when PKA was activated. These data suggest that MyRIP only forms a functional protein complex with BR-MyoVa on SGs when cAMP is elevated and under this condition facilitates phosphorylation of SG-associated proteins, which in turn can enhance secretion.


Author(s):  
Najeeb Ullah ◽  
Ezzouhra El Maaiden ◽  
Md. Sahab Uddin ◽  
Ghulam Md Ashraf

: The fusion of secretory vesicles with the plasma membrane depends on the assembly of v-SNAREs (VAMP2/synaptobrevin2) and t-SNAREs (SNAP25/syntaxin1) into the SNARE complex. Vesicles go through several upstream steps, referred to as docking and priming, to gain fusion competence. The vesicular protein synaptotagmin-1 (Syt-1) is the principal Ca2+ sensor for fusion in several central nervous system neurons and neuroendocrine cells and part of the docking complex for secretory granules. Syt-1 binds to the acceptor complex such as synaxin1, SNAP-25 on the plasma membrane to facilitate secretory vesicle docking, and upon Ca2+-influx promotes vesicle fusion. This review assesses the role of the Syt-1 protein involved in the secretory vesicle docking, priming, and fusion.


Sign in / Sign up

Export Citation Format

Share Document