scholarly journals Tight Turns of Outer Membrane Proteins: An Analysis of Sequence, Structure, and Hydrogen Bonding

2018 ◽  
Author(s):  
Meghan Whitney Franklin ◽  
Joanna S.G. Slusky

I.AbstractAs a structural class, tight turns can control molecular recognition, enzymatic activity, and nucleation of folding. They have been extensively characterized in soluble proteins but have not been characterized in outer membrane proteins (OMPs), where they also support critical functions. We clustered the 4-6 residue tight turns of 110 OMPs to characterize the phi/psi angles, sequence, and hydrogen bonding of these structures. We find significant differences between reports of soluble protein tight turns and OMP tight turns. Since OMP strands are less twisted than soluble strands they favor different turn structures types. Moreover, the membrane localization of OMPs yields different sequence hallmarks for their tight turns relative to soluble protein turns. We also characterize the differences in phi/psi angles, sequence, and hydrogen bonding between OMP extracellular loops and OMP periplasmic turns. As previously noted, the extracellular loops tend to be much longer than the periplasmic turns. We find that this difference in length is due to the broader distribution of lengths of the extracellular loops not a large difference in the median length. Extracellular loops also tend to have more charged residues as predicted by the charge-out rule. Finally, in all OMP tight turns, hydrogen bonding between the sidechain and backbone two to four residues away plays an important role. These bonds preferentially use an Asp, Asn, Ser or Thr residue in a beta or pro phi/psi conformation. We anticipate that this study will be applicable to future design and structure prediction of OMPs.

Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 451
Author(s):  
Pablo Mier ◽  
Miguel A. Andrade-Navarro

Low complexity regions (LCRs) in proteins are characterized by amino acid frequencies that differ from the average. These regions evolve faster and tend to be less conserved between homologs than globular domains. They are not common in bacteria, as compared to their prevalence in eukaryotes. Studying their conservation could help provide hypotheses about their function. To obtain the appropriate evolutionary focus for this rapidly evolving feature, here we study the conservation of LCRs in bacterial strains and compare their high variability to the closeness of the strains. For this, we selected 20 taxonomically diverse bacterial species and obtained the completely sequenced proteomes of two strains per species. We calculated all orthologous pairs for each of the 20 strain pairs. Per orthologous pair, we computed the conservation of two types of LCRs: compositionally biased regions (CBRs) and homorepeats (polyX). Our results show that, in bacteria, Q-rich CBRs are the most conserved, while A-rich CBRs and polyA are the most variable. LCRs have generally higher conservation when comparing pathogenic strains. However, this result depends on protein subcellular location: LCRs accumulate in extracellular and outer membrane proteins, with conservation increased in the extracellular proteins of pathogens, and decreased for polyX in the outer membrane proteins of pathogens. We conclude that these dependencies support the functional importance of LCRs in host–pathogen interactions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Agnieszka Maszewska ◽  
Magdalena Moryl ◽  
Junli Wu ◽  
Bin Liu ◽  
Lu Feng ◽  
...  

AbstractModification of outer membrane proteins (OMPs) is the first line of Gram-negative bacteria defence against antimicrobials. Here we point to Proteus mirabilis OMPs and their role in antibiotic and phage resistance. Protein profiles of amikacin (AMKrsv), phage (Brsv) and amikacin/phage (AMK/Brsv) resistant variants of P. mirabilis were compared to that obtained for a wild strain. In resistant variants there were identified 14, 1, 5 overexpressed and 13, 5, 1 downregulated proteins for AMKrsv, Brsv and AMK/Brsv, respectively. Application of phages with amikacin led to reducing the number of up- and downregulated proteins compared to single antibiotic treatment. Proteins isolated in AMKrsv are involved in protein biosynthesis, transcription and signal transduction, which correspond to well-known mechanisms of bacteria resistance to aminoglycosides. In isolated OMPs several cytoplasmic proteins, important in antibiotic resistance, were identified, probably as a result of environmental stress, e.g. elongation factor Tu, asparaginyl-tRNA and aspartyl-tRNA synthetases. In Brsv there were identified: NusA and dynamin superfamily protein which could play a role in bacteriophage resistance. In the resistant variants proteins associated with resistance mechanisms occurring in biofilm, e.g. polyphosphate kinase, flagella basal body rod protein were detected. These results indicate proteins important in the development of P. mirabilis antibiofilm therapies.


Sign in / Sign up

Export Citation Format

Share Document