protein subcellular location
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 26)

H-INDEX

27
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Danyu Jin ◽  
Ping Zhu

The prediction of protein subcellular localization not only is important for the study of protein structure and function but also can facilitate the design and development of new drugs. In recent years, feature extraction methods based on protein evolution information have attracted much attention and made good progress. Based on the protein position-specific score matrix (PSSM) obtained by PSI-BLAST, PSSM-GSD method is proposed according to the data distribution characteristics. In order to reflect the protein sequence information as much as possible, AAO method, PSSM-AAO method, and PSSM-GSD method are fused together. Then, conditional entropy-based classifier chain algorithm and support vector machine are used to locate multilabel proteins. Finally, we test Gpos-mPLoc and Gneg-mPLoc datasets, considering the severe imbalance of data, and select SMOTE algorithm to expand a few sample; the experiment shows that the AAO + PSSM ∗ method in the paper achieved 83.1% and 86.8% overall accuracy, respectively. After experimental comparison of different methods, AAO + PSSM ∗ has good performance and can effectively predict protein subcellular location.


2021 ◽  
Vol 22 (24) ◽  
pp. 13274
Author(s):  
Yongyan Zhang ◽  
Fan Liu ◽  
Bin Wang ◽  
Huan Wu ◽  
Junwei Wu ◽  
...  

Basic helix-loop-helix proteins (bHLHs) play very important roles in the anthocyanin biosynthesis of many plant species. However, the reports on blueberry anthocyanin biosynthesis-related bHLHs were very limited. In this study, six anthocyanin biosynthesis-related bHLHs were identified from blueberry genome data through homologous protein sequence alignment. Among these blueberry bHLHs, VcAN1, VcbHLH42-1, VcbHLH42-2 and VcbHLH42-3 were clustered into one group, while VcbHLH1-1 and VcbHLH1-2 were clustered into the other group. All these bHLHs were of the bHLH-MYC_N domain, had DNA binding sites and reported conserved amino acids in the bHLH domain, indicating that they were all G-box binding proteins. Protein subcellular location prediction result revealed that all these bHLHs were nucleus-located. Gene structure analysis showed that VcAN1 gDNA contained eight introns, while all the others contained seven introns. Many light-, phytohormone-, stress- and plant growth and development-related cis-acting elements and transcription factor binding sites (TFBSs) were identified in their promoters, but the types and numbers of cis-elements and TFBSs varied greatly between the two bHLH groups. Quantitative real-time PCR results showed that VcAN1 expressed highly in old leaf, stem and blue fruit, and its expression increased as the blueberry fruit ripened. Its expression in purple podetium and old leaf was respectively significantly higher than in green podetium and young leaf, indicating that VcAN1 plays roles in anthocyanin biosynthesis regulation not only in fruit but also in podetium and leaf. VcbHLH1-1 expressed the highest in young leaf and stem, and the lowest in green fruit. The expression of VcbHLH1-1 also increased as the fruit ripened, and its expression in blue fruit was significantly higher than in green fruit. VcbHLH1-2 showed high expression in stem but low expression in fruit, especially in red fruit. Our study indicated that the anthocyanin biosynthesis regulatory functions of these bHLHs showed certain spatiotemporal specificity. Additionally, VcAN1 might be a key gene controlling the anthocyanin biosynthesis in blueberry, whose function is worth exploring further for its potential applications in plant high anthocyanin breeding.


2021 ◽  
Author(s):  
Andrea Castro ◽  
Sahar Kaabinejadian ◽  
William Hildebrand ◽  
Maurizio Zanetti ◽  
Hannah Carter

Antigen presentation via the major histocompatibility complex (MHC) is essential for anti-tumor immunity, however the rules that determine what tumor-derived peptides will be immunogenic are still incompletely understood. Here we investigate whether protein subcellular location driven constraints on accessibility of peptides to the MHC associate with potential for peptide immunogenicity. Analyzing over 380,000 of peptides from studies of MHC presentation and peptide immunogenicity, we find clear spatial biases in both eluted and immunogenic peptides. We find that including parent protein location improves prediction of peptide immunogenicity in multiple datasets. In human immunotherapy cohorts, location was associated with response to a neoantigen vaccine, and immune checkpoint blockade responders generally had a higher burden of neopeptides from accessible locations. We conclude that protein subcellular location adds important information for optimizing immunotherapies.


2021 ◽  
Author(s):  
Ruhollah Jamali ◽  
Soheil Jahangiri-Tazehkand ◽  
Changiz Eslahchi

Abstract Identifying a protein’s subcellular location is of great interest for understanding its function and behavior within the cell. In the last decade, many computational approaches have been proposed as a surrogate for expensive and labor-intensive wet-lab methods that are used for protein subcellular localization. Yet, there is still much room for improving the prediction accuracy of these methods. In this article, we meant to develop a customized computational method rather than using common machine learning predictors, which are used in the majority of computational research on this topic. The neighbourhood regularized logistic matrix factorization technique was used to create PSL-Recommender (Protein subcellular location recommender), a GO-based predictor. We declared statistical inference as the driving force behind the PSL-Recommender here. Following that, it was benchmarked against twelve well-known methods using five different datasets, demonstrating outstanding performance. Finally, we discussed potential research avenues for developing a comprehensive prediction tool for protein subcellular location prediction. The datasets and codes are available at: https://github.com/RJamali/PSL-Recommender


2021 ◽  
Vol 22 (S10) ◽  
Author(s):  
Zhijun Liao ◽  
Gaofeng Pan ◽  
Chao Sun ◽  
Jijun Tang

Abstract Background Protein subcellular localization prediction plays an important role in biology research. Since traditional methods are laborious and time-consuming, many machine learning-based prediction methods have been proposed. However, most of the proposed methods ignore the evolution information of proteins. In order to improve the prediction accuracy, we present a deep learning-based method to predict protein subcellular locations. Results Our method utilizes not only amino acid compositions sequence but also evolution matrices of proteins. Our method uses a bidirectional long short-term memory network that processes the entire protein sequence and a convolutional neural network that extracts features from protein sequences. The position specific scoring matrix is used as a supplement to protein sequences. Our method was trained and tested on two benchmark datasets. The experiment results show that our method yields accurate results on the two datasets with an average precision of 0.7901, ranking loss of 0.0758 and coverage of 1.2848. Conclusion The experiment results show that our method outperforms five methods currently available. According to those experiments, we can see that our method is an acceptable alternative to predict protein subcellular location.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 451
Author(s):  
Pablo Mier ◽  
Miguel A. Andrade-Navarro

Low complexity regions (LCRs) in proteins are characterized by amino acid frequencies that differ from the average. These regions evolve faster and tend to be less conserved between homologs than globular domains. They are not common in bacteria, as compared to their prevalence in eukaryotes. Studying their conservation could help provide hypotheses about their function. To obtain the appropriate evolutionary focus for this rapidly evolving feature, here we study the conservation of LCRs in bacterial strains and compare their high variability to the closeness of the strains. For this, we selected 20 taxonomically diverse bacterial species and obtained the completely sequenced proteomes of two strains per species. We calculated all orthologous pairs for each of the 20 strain pairs. Per orthologous pair, we computed the conservation of two types of LCRs: compositionally biased regions (CBRs) and homorepeats (polyX). Our results show that, in bacteria, Q-rich CBRs are the most conserved, while A-rich CBRs and polyA are the most variable. LCRs have generally higher conservation when comparing pathogenic strains. However, this result depends on protein subcellular location: LCRs accumulate in extracellular and outer membrane proteins, with conservation increased in the extracellular proteins of pathogens, and decreased for polyX in the outer membrane proteins of pathogens. We conclude that these dependencies support the functional importance of LCRs in host–pathogen interactions.


Author(s):  
Ran Su ◽  
Linlin He ◽  
Tianling Liu ◽  
Xiaofeng Liu ◽  
Leyi Wei

Abstract The spatial distribution of proteome at subcellular levels provides clues for protein functions, thus is important to human biology and medicine. Imaging-based methods are one of the most important approaches for predicting protein subcellular location. Although deep neural networks have shown impressive performance in a number of imaging tasks, its application to protein subcellular localization has not been sufficiently explored. In this study, we developed a deep imaging-based approach to localize the proteins at subcellular levels. Based on deep image features extracted from convolutional neural networks (CNNs), both single-label and multi-label locations can be accurately predicted. Particularly, the multi-label prediction is quite a challenging task. Here we developed a criterion learning strategy to exploit the label–attribute relevancy and label–label relevancy. A criterion that was used to determine the final label set was automatically obtained during the learning procedure. We concluded an optimal CNN architecture that could give the best results. Besides, experiments show that compared with the hand-crafted features, the deep features present more accurate prediction with less features. The implementation for the proposed method is available at https://github.com/RanSuLab/ProteinSubcellularLocation.


2020 ◽  
Vol 17 ◽  
Author(s):  
Hongwei Liu ◽  
Bin Hu ◽  
Lei Chen ◽  
Lin Lu

Background: Identification of protein subcellular location is an important problem because the subcellular location is highly related to protein function. It is fundamental to determine the locations with biology experiments. However, these experiments are of high costs and time-consuming. The alternative way to address such problem is to design effective computational methods. Objective: To date, several computational methods have been proposed in this regard. However, these methods mainly adopted the features derived from proteins themselves. On the other hand, with the development of network technique, several embedding algorithms have been proposed, which can encode nodes in the network into feature vectors. Such algorithms connected the network and traditional classification algorithms. Thus, they provided a new way to construct models for the prediction of protein subcellular location. Method: In this study, we analyzed features produced by three network embedding algorithms (DeepWalk, Node2vec and Mashup) that were applied on one or multiple protein networks. Obtained features were learned by one machine learning algorithm (support vector machine or random forest) to construct the model. The cross-validation method was adopted to evaluate all constructed models. Results: After evaluating models with the cross-validation method, embedding features yielded by Mashup on multiple networks were quite informative for predicting protein subcellular location. The model based on these features were superior to some classic models. Conclusion: Embedding features yielded by a proper and powerful network embedding algorithm were effective for building the model for prediction of protein subcellular location, providing new pipelines to build more efficient models.


Sign in / Sign up

Export Citation Format

Share Document