scholarly journals Demand elasticity predicts addiction endophenotypes and the therapeutic efficacy of an orexin/hypocretin-1 receptor antagonist in rats

2018 ◽  
Author(s):  
Morgan H James ◽  
Hannah E Bowrey ◽  
Colin M Stopper ◽  
Gary Aston-Jones

AbstractBehavioral economics is a powerful, translational approach for measuring drug demand in both humans and animals. Here, we asked if demand for cocaine in rats with limited drug experience could be used to identify individuals most at risk of expressing an addiction phenotype following either long (LgA) or intermittent (IntA) access self-administration schedules, both of which model the transition to uncontrolled drug seeking. Moreover, because the orexin-1 receptor antagonist SB-334867 (SB) is particularly effective at reducing drug-seeking in highly motivated individuals, we asked whether demand measured after prolonged drug experience could predict SB efficacy. Demand elasticity (α) measured immediately following acquisition of cocaine self-administration (‘baseline α’) was positively correlated with α assessed after 2w of LgA or IntA. Baseline α also predicted the magnitude of compulsive responding for cocaine, drug seeking in initial abstinence, and cued reinstatement following LgA, IntA or standard short access (ShA). When demand was measured after LgA, IntA or ShA, α predicted the same addiction endophenotypes predicted by baseline α, as well as primed reinstatement and the emergence of negative emotional mood behavior following abstinence. Post-LgA/IntA/ShA α also predicted the efficacy of SB, such that high demand rats showed greater reductions in motivation for cocaine following SB (10 and 30mg/kg) compared to low demand rats. Together, these findings indicate that α might serve as a behavioral biomarker to predict individuals most likely to progress from controlled to uncontrolled drug use, and to identify individuals most likely to benefit from orexin-based therapies for the treatment of addiction.

Author(s):  
Jennifer E. Fragale ◽  
Morgan H. James ◽  
Gary Aston-Jones

AbstractThe orexin (hypocretin) system plays a critical role in motivated drug-taking. Cocaine self-administration with the intermittent access (IntA) procedure produces a robust addiction-like state that is orexin-dependent. Here, we sought to determine the role of the orexin system in opioid addiction using IntA self-administration of fentanyl. Different groups of male rats were either given continuous access in 1h (short access; ShA), or 6h periods (long access, LgA), or IntA (5min of access separated by 25min of no-access) to fentanyl for 14 days. IntA produced a greater escalation of fentanyl intake, motivation for fentanyl on a behavioral economics task, persistent drug seeking during abstinence, and cued-induced reinstatement compared to rats given ShA or LgA. We found that addiction behaviors induced by IntA to fentanyl were reversed by the orexin-1 receptor antagonist SB-334867. IntA to fentanyl was also associated with a persistent increase in the number of orexin-expressing neurons. Together, results indicate that the IntA model is a useful tool in the study of opioid addiction, and that the orexin system is critical for the maintenance of addiction behaviors induced by IntA self-administration of fentanyl.


2011 ◽  
Vol 659 (2-3) ◽  
pp. 187-192 ◽  
Author(s):  
Amanda E. Higley ◽  
Stephen W. Kiefer ◽  
Xia Li ◽  
József Gaál ◽  
Zheng-Xiong Xi ◽  
...  

2018 ◽  
Vol 50 (3) ◽  
pp. 2602-2612 ◽  
Author(s):  
Morgan H. James ◽  
Hannah E. Bowrey ◽  
Colin M. Stopper ◽  
Gary Aston‐Jones

2021 ◽  
Author(s):  
◽  
Caleb Carati

<p>It has been suggested that methamphetamine (MA) self-administration is dependent on dopaminergic mechanisms, and that exposure to high doses of methamphetamine is toxic to central dopamine (DA) and serotonin (5-HT) neurons. Most studies, however, have utilised a short duration, high dose, experimenter-administered MA exposure regime, which is not representative of exposure that results from MA use in humans. The present studies sought to investigate the effects of self-administered MA on brain monoamine levels following a short and longer withdrawal period, and to determine the role of D1- and D2-like receptors in the maintenance of MA self-administration and in relapse to MA-seeking. The effects of self-administered MA (0.1 mg/kg/infusion) on tissue monoamine levels were determined in rats either 24 hours or seven days following 20 daily six hour sessions. A yoked-control self-administration protocol was employed to determine the effects of response contingency. The effect of pre-treatment with the D1-like receptor antagonist, SCH 23390 (0.0; 0.01; 0.02 mg/kg; subcutaneous [SC]), or the D2-like receptor antagonist, eticlopride (0.0; 0.0125; 0.025; 0.05 mg/kg; intraperitoneal [IP]) on MA self-administration reinforced according to a fixed ratio (FR) 1, and progressive ratio (PR; 0.2 mg/kg MA) schedule was determined. The effect of these pharmacological manipulations on relapse to MA-seeking was also determined. Additionally, the role of DA in drug-seeking was examined by measuring the effect of priming injections of the direct D1 receptor agonist, SKF 81297 (0.0; 1.0; 2.0; 4.0 mg/kg; IP), the direct D2 receptor agonist, quinpirole (0.0; 1.0 mg/kg; IP), or the DA transporter (DAT) inhibitor, GBR 12909 (0.0; 1.0; 10.0 mg/kg; IP), on MA-seeking behaviour. Self-administered MA produced a transient decrease in tissue levels of DA and an increase in DA turnover. This effect was produced at 24 hours, but not seven days following the final self-administration session. Similar effects were produced in yoked rats that received the same, non-contingent exposure to MA. Pre-treatment with SCH 23390, but not eticlopride, produced a significant alteration in the dose-response curve of MA self-administration reinforced on an FR1 schedule, and reduced MA produced BPs on the PR schedule. MA-seeking was produced by MA, cocaine and GBR 12909. SCH 23390 pre-treatment significantly reduced drug-primed MA-seeking, whereas eticlopride had no significant effect. Finally, neither SKF 81297, nor quinpirole significantly increased MA-seeking. These findings suggest that self-administered MA does not produce the extensive neurotoxicity seen following high-dose experimenter-administered treatment regimes. The finding that pre-treatment with a D1-, but not a D2-like receptor antagonist altered the maintenance of MA self-administration suggests that neuroadaptations take place as a function of MA self-administration, rendering this behaviour more reliant on D1-like receptor mechanisms. This idea is further supported by the finding that a D1-, but not a D2-like antagonist reduced drug-primed MA-seeking, and that priming injections with a D2 agonist failed to increase MA-seeking behaviour. These results are in contrast to the literature on self-administration and reinstatement of drug-seeking following self-administration of other drugs of abuse, and suggest that dependence on different drugs may become mediated by different DA receptor mechanisms.</p>


2021 ◽  
Author(s):  
◽  
Caleb Carati

<p>It has been suggested that methamphetamine (MA) self-administration is dependent on dopaminergic mechanisms, and that exposure to high doses of methamphetamine is toxic to central dopamine (DA) and serotonin (5-HT) neurons. Most studies, however, have utilised a short duration, high dose, experimenter-administered MA exposure regime, which is not representative of exposure that results from MA use in humans. The present studies sought to investigate the effects of self-administered MA on brain monoamine levels following a short and longer withdrawal period, and to determine the role of D1- and D2-like receptors in the maintenance of MA self-administration and in relapse to MA-seeking. The effects of self-administered MA (0.1 mg/kg/infusion) on tissue monoamine levels were determined in rats either 24 hours or seven days following 20 daily six hour sessions. A yoked-control self-administration protocol was employed to determine the effects of response contingency. The effect of pre-treatment with the D1-like receptor antagonist, SCH 23390 (0.0; 0.01; 0.02 mg/kg; subcutaneous [SC]), or the D2-like receptor antagonist, eticlopride (0.0; 0.0125; 0.025; 0.05 mg/kg; intraperitoneal [IP]) on MA self-administration reinforced according to a fixed ratio (FR) 1, and progressive ratio (PR; 0.2 mg/kg MA) schedule was determined. The effect of these pharmacological manipulations on relapse to MA-seeking was also determined. Additionally, the role of DA in drug-seeking was examined by measuring the effect of priming injections of the direct D1 receptor agonist, SKF 81297 (0.0; 1.0; 2.0; 4.0 mg/kg; IP), the direct D2 receptor agonist, quinpirole (0.0; 1.0 mg/kg; IP), or the DA transporter (DAT) inhibitor, GBR 12909 (0.0; 1.0; 10.0 mg/kg; IP), on MA-seeking behaviour. Self-administered MA produced a transient decrease in tissue levels of DA and an increase in DA turnover. This effect was produced at 24 hours, but not seven days following the final self-administration session. Similar effects were produced in yoked rats that received the same, non-contingent exposure to MA. Pre-treatment with SCH 23390, but not eticlopride, produced a significant alteration in the dose-response curve of MA self-administration reinforced on an FR1 schedule, and reduced MA produced BPs on the PR schedule. MA-seeking was produced by MA, cocaine and GBR 12909. SCH 23390 pre-treatment significantly reduced drug-primed MA-seeking, whereas eticlopride had no significant effect. Finally, neither SKF 81297, nor quinpirole significantly increased MA-seeking. These findings suggest that self-administered MA does not produce the extensive neurotoxicity seen following high-dose experimenter-administered treatment regimes. The finding that pre-treatment with a D1-, but not a D2-like receptor antagonist altered the maintenance of MA self-administration suggests that neuroadaptations take place as a function of MA self-administration, rendering this behaviour more reliant on D1-like receptor mechanisms. This idea is further supported by the finding that a D1-, but not a D2-like antagonist reduced drug-primed MA-seeking, and that priming injections with a D2 agonist failed to increase MA-seeking behaviour. These results are in contrast to the literature on self-administration and reinstatement of drug-seeking following self-administration of other drugs of abuse, and suggest that dependence on different drugs may become mediated by different DA receptor mechanisms.</p>


Sign in / Sign up

Export Citation Format

Share Document