scholarly journals Intermittent self-administration of fentanyl induces a multifaceted addiction state associated with persistent changes in the orexin system

Author(s):  
Jennifer E. Fragale ◽  
Morgan H. James ◽  
Gary Aston-Jones

AbstractThe orexin (hypocretin) system plays a critical role in motivated drug-taking. Cocaine self-administration with the intermittent access (IntA) procedure produces a robust addiction-like state that is orexin-dependent. Here, we sought to determine the role of the orexin system in opioid addiction using IntA self-administration of fentanyl. Different groups of male rats were either given continuous access in 1h (short access; ShA), or 6h periods (long access, LgA), or IntA (5min of access separated by 25min of no-access) to fentanyl for 14 days. IntA produced a greater escalation of fentanyl intake, motivation for fentanyl on a behavioral economics task, persistent drug seeking during abstinence, and cued-induced reinstatement compared to rats given ShA or LgA. We found that addiction behaviors induced by IntA to fentanyl were reversed by the orexin-1 receptor antagonist SB-334867. IntA to fentanyl was also associated with a persistent increase in the number of orexin-expressing neurons. Together, results indicate that the IntA model is a useful tool in the study of opioid addiction, and that the orexin system is critical for the maintenance of addiction behaviors induced by IntA self-administration of fentanyl.

2020 ◽  
Author(s):  
Ellie-Anna Minogianis ◽  
Anne-Noël Samaha

ABSTRACTA goal in addiction research is to distinguish forms of neuroplasticity that are involved in the transition to addiction from those involved in mere drug taking. Animal models of drug self-administration are essential in this context. Here, we compared in male rats two cocaine self-administration procedures that differ in the extent to which they evoke addiction-like behaviours. We measured both incentive motivation for cocaine using progressive ratio procedures, and cocaine-induced c-fos mRNA expression, a marker of neuronal activity. Rats self-administered intravenous cocaine (0.25 mg/kg/infusion) for seven daily 6-hour sessions. One group had intermittent access (IntA; 6 minutes ON, 26 minutes OFF x 12) to rapid infusions (delivered over 5 seconds). This models the temporal kinetics of human cocaine use and produces robust addiction-like behaviour. The other group had Long access (LgA) to slower infusions (90 seconds). This produces high levels of intake without promoting robust addiction-like behaviour. LgA-90s rats took twice as much cocaine as IntA-5s rats did, but IntA-5s rats showed greater incentive motivation for the drug. Following a final self-administration session, we quantified c-fos mRNA expression in corticostriatal regions. Compared to LgA-90s rats, IntA-5s rats had more cocaine-induced c-fos mRNA in the orbitofrontal and prelimbic cortices and the caudate-putamen. Thus, a cocaine self-administration procedure (intermittent intake of rapid infusions) that promotes increased incentive motivation for the drug also enhances cocaine-induced gene regulation in corticostriatal regions. This suggests that increased drug-induced recruitment of these regions could contribute to the neural and behavioural plasticity underlying the transition to addiction.


2021 ◽  
Author(s):  
◽  
Caleb Carati

<p>It has been suggested that methamphetamine (MA) self-administration is dependent on dopaminergic mechanisms, and that exposure to high doses of methamphetamine is toxic to central dopamine (DA) and serotonin (5-HT) neurons. Most studies, however, have utilised a short duration, high dose, experimenter-administered MA exposure regime, which is not representative of exposure that results from MA use in humans. The present studies sought to investigate the effects of self-administered MA on brain monoamine levels following a short and longer withdrawal period, and to determine the role of D1- and D2-like receptors in the maintenance of MA self-administration and in relapse to MA-seeking. The effects of self-administered MA (0.1 mg/kg/infusion) on tissue monoamine levels were determined in rats either 24 hours or seven days following 20 daily six hour sessions. A yoked-control self-administration protocol was employed to determine the effects of response contingency. The effect of pre-treatment with the D1-like receptor antagonist, SCH 23390 (0.0; 0.01; 0.02 mg/kg; subcutaneous [SC]), or the D2-like receptor antagonist, eticlopride (0.0; 0.0125; 0.025; 0.05 mg/kg; intraperitoneal [IP]) on MA self-administration reinforced according to a fixed ratio (FR) 1, and progressive ratio (PR; 0.2 mg/kg MA) schedule was determined. The effect of these pharmacological manipulations on relapse to MA-seeking was also determined. Additionally, the role of DA in drug-seeking was examined by measuring the effect of priming injections of the direct D1 receptor agonist, SKF 81297 (0.0; 1.0; 2.0; 4.0 mg/kg; IP), the direct D2 receptor agonist, quinpirole (0.0; 1.0 mg/kg; IP), or the DA transporter (DAT) inhibitor, GBR 12909 (0.0; 1.0; 10.0 mg/kg; IP), on MA-seeking behaviour. Self-administered MA produced a transient decrease in tissue levels of DA and an increase in DA turnover. This effect was produced at 24 hours, but not seven days following the final self-administration session. Similar effects were produced in yoked rats that received the same, non-contingent exposure to MA. Pre-treatment with SCH 23390, but not eticlopride, produced a significant alteration in the dose-response curve of MA self-administration reinforced on an FR1 schedule, and reduced MA produced BPs on the PR schedule. MA-seeking was produced by MA, cocaine and GBR 12909. SCH 23390 pre-treatment significantly reduced drug-primed MA-seeking, whereas eticlopride had no significant effect. Finally, neither SKF 81297, nor quinpirole significantly increased MA-seeking. These findings suggest that self-administered MA does not produce the extensive neurotoxicity seen following high-dose experimenter-administered treatment regimes. The finding that pre-treatment with a D1-, but not a D2-like receptor antagonist altered the maintenance of MA self-administration suggests that neuroadaptations take place as a function of MA self-administration, rendering this behaviour more reliant on D1-like receptor mechanisms. This idea is further supported by the finding that a D1-, but not a D2-like antagonist reduced drug-primed MA-seeking, and that priming injections with a D2 agonist failed to increase MA-seeking behaviour. These results are in contrast to the literature on self-administration and reinstatement of drug-seeking following self-administration of other drugs of abuse, and suggest that dependence on different drugs may become mediated by different DA receptor mechanisms.</p>


2021 ◽  
Author(s):  
◽  
Caleb Carati

<p>It has been suggested that methamphetamine (MA) self-administration is dependent on dopaminergic mechanisms, and that exposure to high doses of methamphetamine is toxic to central dopamine (DA) and serotonin (5-HT) neurons. Most studies, however, have utilised a short duration, high dose, experimenter-administered MA exposure regime, which is not representative of exposure that results from MA use in humans. The present studies sought to investigate the effects of self-administered MA on brain monoamine levels following a short and longer withdrawal period, and to determine the role of D1- and D2-like receptors in the maintenance of MA self-administration and in relapse to MA-seeking. The effects of self-administered MA (0.1 mg/kg/infusion) on tissue monoamine levels were determined in rats either 24 hours or seven days following 20 daily six hour sessions. A yoked-control self-administration protocol was employed to determine the effects of response contingency. The effect of pre-treatment with the D1-like receptor antagonist, SCH 23390 (0.0; 0.01; 0.02 mg/kg; subcutaneous [SC]), or the D2-like receptor antagonist, eticlopride (0.0; 0.0125; 0.025; 0.05 mg/kg; intraperitoneal [IP]) on MA self-administration reinforced according to a fixed ratio (FR) 1, and progressive ratio (PR; 0.2 mg/kg MA) schedule was determined. The effect of these pharmacological manipulations on relapse to MA-seeking was also determined. Additionally, the role of DA in drug-seeking was examined by measuring the effect of priming injections of the direct D1 receptor agonist, SKF 81297 (0.0; 1.0; 2.0; 4.0 mg/kg; IP), the direct D2 receptor agonist, quinpirole (0.0; 1.0 mg/kg; IP), or the DA transporter (DAT) inhibitor, GBR 12909 (0.0; 1.0; 10.0 mg/kg; IP), on MA-seeking behaviour. Self-administered MA produced a transient decrease in tissue levels of DA and an increase in DA turnover. This effect was produced at 24 hours, but not seven days following the final self-administration session. Similar effects were produced in yoked rats that received the same, non-contingent exposure to MA. Pre-treatment with SCH 23390, but not eticlopride, produced a significant alteration in the dose-response curve of MA self-administration reinforced on an FR1 schedule, and reduced MA produced BPs on the PR schedule. MA-seeking was produced by MA, cocaine and GBR 12909. SCH 23390 pre-treatment significantly reduced drug-primed MA-seeking, whereas eticlopride had no significant effect. Finally, neither SKF 81297, nor quinpirole significantly increased MA-seeking. These findings suggest that self-administered MA does not produce the extensive neurotoxicity seen following high-dose experimenter-administered treatment regimes. The finding that pre-treatment with a D1-, but not a D2-like receptor antagonist altered the maintenance of MA self-administration suggests that neuroadaptations take place as a function of MA self-administration, rendering this behaviour more reliant on D1-like receptor mechanisms. This idea is further supported by the finding that a D1-, but not a D2-like antagonist reduced drug-primed MA-seeking, and that priming injections with a D2 agonist failed to increase MA-seeking behaviour. These results are in contrast to the literature on self-administration and reinstatement of drug-seeking following self-administration of other drugs of abuse, and suggest that dependence on different drugs may become mediated by different DA receptor mechanisms.</p>


2018 ◽  
Author(s):  
Morgan H James ◽  
Hannah E Bowrey ◽  
Colin M Stopper ◽  
Gary Aston-Jones

AbstractBehavioral economics is a powerful, translational approach for measuring drug demand in both humans and animals. Here, we asked if demand for cocaine in rats with limited drug experience could be used to identify individuals most at risk of expressing an addiction phenotype following either long (LgA) or intermittent (IntA) access self-administration schedules, both of which model the transition to uncontrolled drug seeking. Moreover, because the orexin-1 receptor antagonist SB-334867 (SB) is particularly effective at reducing drug-seeking in highly motivated individuals, we asked whether demand measured after prolonged drug experience could predict SB efficacy. Demand elasticity (α) measured immediately following acquisition of cocaine self-administration (‘baseline α’) was positively correlated with α assessed after 2w of LgA or IntA. Baseline α also predicted the magnitude of compulsive responding for cocaine, drug seeking in initial abstinence, and cued reinstatement following LgA, IntA or standard short access (ShA). When demand was measured after LgA, IntA or ShA, α predicted the same addiction endophenotypes predicted by baseline α, as well as primed reinstatement and the emergence of negative emotional mood behavior following abstinence. Post-LgA/IntA/ShA α also predicted the efficacy of SB, such that high demand rats showed greater reductions in motivation for cocaine following SB (10 and 30mg/kg) compared to low demand rats. Together, these findings indicate that α might serve as a behavioral biomarker to predict individuals most likely to progress from controlled to uncontrolled drug use, and to identify individuals most likely to benefit from orexin-based therapies for the treatment of addiction.


2018 ◽  
Author(s):  
Hajer Algallal ◽  
Florence Allain ◽  
Ndeye Aissatou Ndiaye ◽  
Anne-Noel Samaha

A widely accepted rodent model to study cocaine addiction involves allowing animals continuous access to drug during long self-administration sessions (Long-access or LgA). This produces continuously high brain concentrations of drug during each session. This might not model the pharmacokinetics of cocaine use in experienced human users, which are thought to involve intermittently spiking brain cocaine concentrations within and between bouts of use. Intermittent-access (IntA) cocaine self-administration models this spiking pattern in rats. IntA is also particularly effective in increasing incentive motivation for drug. Most IntA studies have been conducted in male rats. Both humans and non-human animals can show sex differences in all phases of the addiction process. We compared cocaine use in female and male rats that self-administered the drug (0.25 mg/kg/injection, i.v.) during 10 daily, 6-h LgA or IntA sessions. Cocaine intake was greatest under LgA, and female LgA rats escalated their intake. However, only IntA rats (both sexes) developed locomotor sensitization to self-administered cocaine and sensitization was greatest in the females. Five and 25 days after the last self-administration session, we quantified incentive motivation for cocaine by measuring breakpoints for the drug (0.083-0.75 mg/kg/injection) under progressive ratio. Breakpoints were similar in IntA and LgA rats. There were no sex differences in breakpoints under LgA. However, under IntA, females reached higher breakpoints for cocaine than males. Thus, LgA might be best suited to study sex differences in cocaine intake, while IntA might be best suited to study sex differences in incentive motivational processes in cocaine addiction.


Author(s):  
James M. Kasper ◽  
Ashley E. Smith ◽  
Sierra N. Miller ◽  
Ara ◽  
William K. Russell ◽  
...  

Author(s):  
Masoomeh Dadkhah ◽  
◽  
Abbas Ali Vafaei ◽  
Ali Rashidy-Pour ◽  
Parnia Trahomi ◽  
...  

Purpose: The basolateral amygdala (BLA) and infralimbic area (IL) of medial prefrontal cortex (mPFC) are two inter-connected brain structures that mediate both fear memory expression and extinction. Besides the well-known role of the BLA in the acquisition and expression of fear memory, projections from IL to BLA inhibit fear expression and have a critical role in fear extinction. However, the details of IL-BLA interaction remain unclear. Here, we aimed to investigate the role of functional reciprocal interactions between BLA and IL in mediating fear memory extinction. Methods: Using lidocaine (LID), male rats underwent unilateral or bilateral inactivation of the BLA and then unilateral intra-IL infusion of CORT, prior to extinction training of auditory fear conditioning paradigm. Freezing behavior was reported as an index for the measurement of conditioned fear. Infusions were performed before the extinction training, allowing to examine the effects on fear expression and also further extinction memory. Experiments 1-3 investigated the effects of left or right infusion of CORT into IL, and LID unilaterally into BLA on fear memory extinction. Results: Results showed that intra-IL infusion of CORT in the right hemisphere reduced freezing behavior when administrated before the extinction training. Auditory fear memory extinction was impaired by asymmetric inactivation of BLA and CORT infusion in the right IL; however, the same effect was not observed with symmetric inactivation of BLA. Conclusion: It is concluded that that the IL-BLA neural circuit may provide additional evidence to contribution of this circuit in auditory fear extinction. This study demonstrate dissociable roles for right or left BLA in subserving the auditory fear extinction. Our finding also raise the possibility that left BLA-IL circuitry may contribute in mediating auditory fear memory extinction via underlying mechanisms, however further research is required.


2001 ◽  
Vol 281 (5) ◽  
pp. H2218-H2225 ◽  
Author(s):  
Jennifer R. Ballew ◽  
Gregory D. Fink

We showed recently that endothelin (ET)A receptors are involved in the salt sensitivity of ANG II-induced hypertension. The objective of this current study was to characterize the role of endothelin ETB receptor activation in the same model. Male rats on fixed normal (2 meq/day) or high (6 meq/day) salt intake received a continuous intravenous infusion of ANG II or salt only for 15 days. During the middle 5 days of the infusion period, rats were given either the selective ETB receptor antagonist A-192621 or the nonselective endothelin receptor antagonist A-182086 (both at 24 mg · kg−1 · day−1intra-arterially). Infusion of ANG II caused a greater rise in arterial pressure in rats on high-salt intake. The administration of A-192621 increased arterial pressure further in all rats. The chronic hypertensive effect of A-192621 was not significantly affected by salt intake or ANG II. The administration of A-182086 lowered arterial pressure chronically only in rats on normal salt intake receiving ANG II. Thus the salt sensitivity of ANG II-induced hypertension is not caused by changes in ETB receptor function.


2020 ◽  
pp. e12896 ◽  
Author(s):  
Lucia Caffino ◽  
Francesca Mottarlini ◽  
Boyd Van Reijmersdal ◽  
Francesca Telese ◽  
Michel M.M. Verheij ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document