scholarly journals Host Enzymes Heparanase and Cathepsin L Promote Herpes Simplex Virus-2 Release from Cells

2018 ◽  
Author(s):  
James Hopkins ◽  
Tejabhiram Yadavalli ◽  
Alex Agelidis ◽  
Deepak Shukla

Herpes simplex virus-2 (HSV-2) can productively infect many different cell types of human and non-human origin. Here we demonstrate interconnected roles for two host enzymes, heparanase (HPSE) and cathepsin L in HSV-2 release from cells. In vaginal epithelial cells and other cell lines tested, HSV-2 causes heparan sulfate shedding and upregulation in HPSE levels during the productive phase of infection. We also noted increased levels of cathepsin L and show that regulation of HPSE by cathepsin L via cleavage of HPSE proenzyme is important for infection. Furthermore, inhibition of HPSE by a specific inhibitor, OGT 2115, dramatically reduces HSV-2 release from vaginal epithelial cells. Likewise, we show evidence that the inhibition of cathepsin L is detrimental to the infection. The HPSE increase after infection is mediated by an increased NF-kB nuclear localization and a resultant activation of HPSE transcription. Together these mechanisms contribute to the removal of heparan sulfate from the cell surface, and thus facilitate virus release from cells.


2018 ◽  
Vol 92 (23) ◽  
Author(s):  
James Hopkins ◽  
Tejabhiram Yadavalli ◽  
Alex M. Agelidis ◽  
Deepak Shukla

ABSTRACTHerpes simplex virus 2 (HSV-2) can productively infect many different cell types of human and nonhuman origin. Here we demonstrate interconnected roles for two host enzymes, heparanase (HPSE) and cathepsin L, in HSV-2 release from cells. In vaginal epithelial cells, HSV-2 causes heparan sulfate shedding and upregulation in HPSE levels during the productive phase of infection. We also noted increased levels of cathepsin L and show that regulation of HPSE by cathepsin L via cleavage of HPSE proenzyme is important for infection. Furthermore, inhibition of HPSE by a specific inhibitor, OGT 2115, dramatically reduces HSV-2 release from vaginal epithelial cells. Likewise, we show evidence that the inhibition of cathepsin L is detrimental to the infection. The HPSE increase after infection is mediated by an increased NF-κB nuclear localization and a resultant activation of HPSE transcription. Together these mechanisms contribute to the removal of heparan sulfate from the cell surface and thus facilitate virus release from cells.IMPORTANCEGenital infections by HSV-2 represent one of the most common sexually transmitted viral infections. The virus causes painful lesions and sores around the genitals or rectum. Intermittent release of the virus from infected tissues during sexual activities is the most common cause of transmission. At the molecular level, cell surface heparan sulfate (HS) is known to provide attachment sites for HSV-2. While the removal of HS during HSV-1 release has been shown, not much is known about the host factors and their regulators that contribute to HSV-2 release from natural target cell types. Here we suggest a role for the host enzyme heparanase in HSV-2 release. Our work reveals that in addition to the regulation of transcription by NF-κB, HPSE is also regulated posttranslationally by cathepsin L and that inhibition of heparanase activity directly affects HSV-2 release. We provide unique insights into the host mechanisms controlling HSV-2 egress and spread.



2011 ◽  
Vol 92 (9) ◽  
pp. 1981-1993 ◽  
Author(s):  
Xiao-Dan Yao ◽  
Kenneth Lee Rosenthal

Viruses that establish persistent infections have evolved numerous strategies to evade host innate antiviral responses. We functionally assessed the role of herpes simplex virus type 2 (HSV-2) virion host shutoff (vhs) protein on innate immune sensing pathways in human vaginal epithelial cells (VK2 ECs). Infection of cells with wild-type (WT) HSV-2 significantly decreased expression of innate immune sensors of viral infection, Toll-like receptor (TLR)2, TLR3, retinoic acid inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (Mda-5), relative to cells infected with a mutant that lacks vhs (vhsB) or mock-infected cells. Transfection with HSV-2 vhs similarly decreased expression of TLR2, TLR3, RIG-I and Mda-5, which was also confirmed in human embryonic kidney (HEK) 293 cells. vhsB infection of VK2 cells caused robust increases in the active form of interferon regulatory factor (IRF)3 and its translocation to the nucleus compared with the WT. Additionally, IRF3 activation by Sendai virus and polyinosinic : polycytidylic acid-induced stimulation of beta interferon (IFN-β) was significantly inhibited in vhs-transfected cells. Overall, our findings provide the first evidence that HSV-2 vhs plays roles in selectively inhibiting TLR3 and RIG-I/Mda-5, as well as TLR2-mediated antiviral pathways for sensing dsRNA and effectively suppresses IFN-β antiviral responses in human vaginal ECs.



2018 ◽  
Vol 93 (2) ◽  
Author(s):  
Ming Lo ◽  
Jia Zhu ◽  
Scott G. Hansen ◽  
Timothy Carroll ◽  
Christina Farr Zuend ◽  
...  

ABSTRACTHerpes simplex virus 2 (HSV-2) is a common sexually transmitted infection with a highly variable clinical course. Many infections quickly become subclinical, with episodes of spontaneous virus reactivation. To study host–HSV-2 interactions, an animal model of subclinical HSV-2 infection is needed. In an effort to develop a relevant model, rhesus macaques (RM) were inoculated intravaginally with two or three HSV-2 strains (186, 333, and/or G) at a total dose of 1 × 107PFU of HSV-2 per animal. Infectious HSV-2 and HSV-2 DNA were consistently shed in vaginal swabs for the first 7 to 14 days after each inoculation. Proteins associated with wound healing, innate immunity, and inflammation were significantly increased in cervical secretions immediately after HSV-2 inoculation. There was histologic evidence of acute herpesvirus pathology, including acantholysis in the squamous epithelium and ballooning degeneration of and intranuclear inclusion bodies in epithelial cells, with HSV antigen in mucosal epithelial cells and keratinocytes. Further, an intense inflammatory infiltrate was found in the cervix and vulva. Evidence of latent infection and reactivation was demonstrated by the detection of spontaneous HSV-2 shedding post-acute inoculation (102to 103DNA copies/swab) in 80% of RM. Further, HSV-2 DNA was detected in ganglia in most necropsied animals. HSV-2-specifc T-cell responses were detected in all animals, although antibodies to HSV-2 were detected in only 30% of the animals. Thus, HSV-2 infection of RM recapitulates many of the key features of subclinical HSV-2 infection in women but seems to be more limited, as virus shedding was undetectable more than 40 days after the last virus inoculation.IMPORTANCEHerpes simplex virus 2 (HSV-2) infects nearly 500 million persons globally, with an estimated 21 million incident cases each year, making it one of the most common sexually transmitted infections (STIs). HSV-2 is associated with increased human immunodeficiency virus type 1 (HIV-1) acquisition, and this risk does not decline with the use of antiherpes drugs. As initial acquisition of both HIV and HSV-2 infections is subclinical, study of the initial molecular interactions of the two agents requires an animal model. We found that HSV-2 can infect RM after vaginal inoculation, establish latency in the nervous system, and spontaneously reactivate; these features mimic some of the key features of HSV-2 infection in women. RM may provide an animal model to develop strategies to prevent HSV-2 acquisition and reactivation.



2003 ◽  
Vol 77 (4) ◽  
pp. 2686-2695 ◽  
Author(s):  
Wendy J. Collins ◽  
David C. Johnson

ABSTRACT The herpes simplex virus (HSV) glycoprotein heterodimer gE/gI plays an important role in virus cell-to-cell spread in epithelial and neuronal tissues. In an analogous fashion, gE/gI promotes virus spread between certain cell types in culture, e.g., keratinocytes and epithelial cells, cells that are polarized or that form extensive cell junctions. One mechanism by which gE/gI facilitates cell-to-cell spread involves selective sorting of nascent virions to cell junctions, a process that requires the cytoplasmic domain of gE. However, the large extracellular domains of gE/gI also appear to be involved in cell-to-cell spread. Here, we show that coexpression of a truncated form of gE and gI in a human keratinocyte line, HaCaT cells, decreased the spread of HSV between cells. This truncated gE/gI was found extensively at cell junctions. Expression of wild-type gE/gI that accumulates at intracellular sites, in the trans-Golgi network, did not reduce cell-to-cell spread. There was no obvious reduction in production of infectious HSV in cells expressing gE/gI, and virus particles accumulated at cell junctions, not at intracellular sites. Expression of HSV gD, which is known to bind virus receptors, also blocked cell-to-cell spread. Therefore, like gD, gE/gI appears to be able to interact with cellular components of cell junctions, gE/gI receptors which can promote HSV cell-to-cell spread.



2020 ◽  
Vol 64 (9) ◽  
Author(s):  
James Hopkins ◽  
Tejabhiram Yadavalli ◽  
Rahul Suryawanshi ◽  
Farreh Qatanani ◽  
Ipsita Volety ◽  
...  

ABSTRACT Herpes simplex virus type 2 (HSV-2) causes recurrent lesions in the anogenital area that may be transmitted through sexual encounters. Nucleoside analogs, such as acyclovir (ACV), are currently prescribed clinically to curb this infection. However, in some cases, reduced efficacy has been observed due to the emergence of resistance against these drugs. In our previous study, we reported the discovery of a novel anti-HSV-1 small molecule, BX795, which was originally used as an inhibitor of TANK-binding kinase 1 (TBK1). In this study, we report the antiviral efficacy of BX795 on HSV-2 infection in vaginal epithelial cells in vitro at 10 μM and in vivo at 50 μM. Additionally, through biochemical assays in vitro and histopathology in vivo, we show the tolerability of BX795 in vaginal epithelial cells at concentrations as high as 80 μM. Our investigations also revealed that the mechanism of action of BX795 antiviral activity stems from the reduction of viral protein translation via inhibition of protein kinase B phosphorylation. Finally, using a murine model of vaginal infection, we show that topical therapy using 50 μM BX795 is well tolerated and efficacious in controlling HSV-2 replication.



2012 ◽  
Vol 86 (12) ◽  
pp. 6434-6443 ◽  
Author(s):  
M. M. Ali ◽  
G. A. Karasneh ◽  
M. J. Jarding ◽  
V. Tiwari ◽  
D. Shukla




Sign in / Sign up

Export Citation Format

Share Document