scholarly journals Gap junctions set the speed and nucleation rate of stage I retinal waves

2018 ◽  
Author(s):  
Kähne Malte ◽  
Rüdiger Sten ◽  
Kihara Alexandre ◽  
Lindner Benjamin

AbstractSpontaneous waves in the developing retina are essential in the formation of the retinotopic mapping in the visual system. From experiments in rabbits, it is known that the earliest type of retinal waves (stage I) is nucleated spontaneously, propagates at a speed of 451±91 μm/sec and relies on gap junction coupling between ganglion cells. Because gap junctions (electrical synapses) have short integration times, it has been argued that they cannot set the low speed of stage I retinal waves. Here, we present a theoretical study of a two-dimensional neural network of the ganglion cell layer with gap junction coupling and intrinsic noise. We demonstrate that this model can explain observed nucleation rates as well as the comparatively slow propagation speed of the waves. From the interaction between two coupled neurons, we estimate the wave speed in the model network. Furthermore, using simulations of small networks of neurons (N≤260), we estimate the nucleation rate in form of an Arrhenius escape rate. These results allow for informed simulations of a realistically sized network, yielding values of the gap junction coupling and the intrinsic noise level that are in a physiologically plausible range.Author summaryRetinal waves are a prominent example of spontaneous activity that is observed in neuronal systems of many different species during development. Spatio-temporally correlated bursts travel across the retina at a few hundred μm/sec to facilitate the maturation of the underlying neuronal circuits. Even at the earliest stage, in which the network merely consists of ganglion cells coupled by electric synapses (gap junctions), it is unclear which mechanisms are responsible for wave nucleation and transmission speed. We propose a model of gap-junction coupled noisy neurons, in which waves emerge from rare stochastic fluctuations in single cells and the wave’s transmission speed is set by the latency of the burst onset in response to gap-junction currents between neighboring cells.

2001 ◽  
Vol 114 (11) ◽  
pp. 1999-2007
Author(s):  
Caroline Clair ◽  
Cécile Chalumeau ◽  
Thierry Tordjmann ◽  
Josiane Poggioli ◽  
Christophe Erneux ◽  
...  

Glycogenolytic agonists induce coordinated Ca2+ oscillations in multicellular rat hepatocyte systems as well as in the intact liver. The coordination of intercellular Ca2+ signals requires functional gap-junction coupling. The mechanisms ensuring this coordination are not precisely known. We investigated possible roles of Ca2+ or inositol 1,4,5-trisphosphate (InsP3) as a coordinating messengers for Ca2+ spiking among connected hepatocytes. Application of ionomycin or of supra-maximal concentrations of agonists show that Ca2+ does not significantly diffuse between connected hepatocytes, although gap junctions ensure the passage of small signaling molecules, as demonstrated by FRAP experiments. By contrast, coordination of Ca2+ spiking among connected hepatocytes can be favored by a rise in the level of InsP3, via the increase of agonist concentrations, or by a shift in the affinity of InsP3 receptor for InsP3. In the same line, coordination cannot be achieved if the InsP3 is rapidly metabolized by InsP3-phosphatase in one cell of the multiplet. These results demonstrate that even if small amounts of Ca2+ diffuse across gap junctions, they most probably do not play a significant role in inducing a coordinated Ca2+ signal among connected hepatocytes. By contrast, coordination of Ca2+ oscillations is fully dependent on the diffusion of InsP3 between neighboring cells.


2020 ◽  
Vol 295 (44) ◽  
pp. 15097-15111
Author(s):  
Mahua Maulik ◽  
Lakshmy Vasan ◽  
Abhishek Bose ◽  
Saikat Dutta Chowdhury ◽  
Neelanjana Sengupta ◽  
...  

Altered expression and function of astroglial gap junction protein connexin 43 (Cx43) has increasingly been associated to neurotoxicity in Alzheimer disease (AD). Although earlier studies have examined the effect of increased β-amyloid (Aβ) on Cx43 expression and function leading to neuronal damage, underlying mechanisms by which Aβ modulates Cx43 in astrocytes remain elusive. Here, using mouse primary astrocyte cultures, we have examined the cellular processes by which Aβ can alter Cx43 gap junctions. We show that Aβ25-35 impairs functional gap junction coupling yet increases hemichannel activity. Interestingly, Aβ25-35 increased the intracellular pool of Cx43 with a parallel decrease in gap junction assembly at the surface. Intracellular Cx43 was found to be partly retained in the endoplasmic reticulum-associated cell compartments. However, forward trafficking of the newly synthesized Cx43 that already reached the Golgi was not affected in Aβ25-35-exposed astrocytes. Supporting this, treatment with 4-phenylbutyrate, a well-known chemical chaperone that improves trafficking of several transmembrane proteins, restored Aβ-induced impaired gap junction coupling between astrocytes. We further show that interruption of Cx43 endocytosis in Aβ25-35-exposed astrocytes resulted in their retention at the cell surface in the form of functional gap junctions indicating that Aβ25-35 causes rapid internalization of Cx43 gap junctions. Additionally, in silico molecular docking suggests that Aβ can bind favorably to Cx43. Our study thus provides novel insights into the cellular mechanisms by which Aβ modulates Cx43 function in astrocytes, the basic understanding of which is vital for the development of alternative therapeutic strategy targeting connexin channels in AD.


2019 ◽  
Vol 15 (4) ◽  
pp. e1006355 ◽  
Author(s):  
Malte Kähne ◽  
Sten Rüdiger ◽  
Alexandre Hiroaki Kihara ◽  
Benjamin Lindner

2005 ◽  
Vol 22 (6) ◽  
pp. 769-787 ◽  
Author(s):  
FRANKLIN R. AMTHOR ◽  
JOHN S. TOOTLE ◽  
NORBERTO M. GRZYWACZ

Synchronous spiking has been postulated to be a meta-signal in visual cortex and other CNS loci that tags neuronal spike responses to a single entity. In retina, however, synchronized spikes have been postulated to arise via mechanisms that would largely preclude their carrying such a code. One such mechanism is gap junction coupling, in which synchronous spikes would be a by-product of lateral signal sharing. Synchronous spikes have also been postulated to arise from common-source inputs to retinal ganglion cells having overlapping receptive fields, and thus code for stimulus location in the overlap area. On–Off directionally selective ganglion cells of the rabbit retina exhibit a highly precise tiling pattern in which gap junction coupling occurs between some neighboring, same-preferred-direction cells. Depending on how correlated spikes arise, and for what purpose, one could postulate that synchronized spikes in this system (1) always arise in some subset of same-direction cells because of gap junctions, but never in non-same-preferred-directional cells; (2) never arise in same-directional cells because their receptive fields do not overlap, but arise only in different-directional cells whose receptive fields overlap, as a code for location in the overlap region; or (3) arise in a stimulus-dependent manner for both same- and different-preferred-direction cells for a function similar to that postulated for neurons in visual cortex. Simultaneous, extracellular recordings were obtained from neighboring On–Off directionally selective (DS) ganglion cells having the same and different preferred directions in an isolated rabbit retinal preparation. Stimulation by large flashing spots elicited responses from DS ganglion-cell pairs that typically showed little synchronous firing. Movement of extended bars, however, often produced synchronous spikes in cells having similar or orthogonal preferred directions. Surprisingly, correlated firing could occur for the opposite contrast polarity edges of moving stimuli when the leading edge of a sweeping bar excited the receptive field of one cell as its trailing edge stimulated another. Pharmacological manipulations showed that the spike synchronization is enhanced by excitatory cholinergic amacrine-cell inputs, and reduced by inhibitory GABAergic inputs, in a motion-specific manner. One possible interpretation is that this synchronous firing could be a signal to higher centers that the outputs of the two DS ganglion cells should be “bound” together as responding to a contour of a common object.


2007 ◽  
Vol 98 (5) ◽  
pp. 2878-2886 ◽  
Author(s):  
Juan Carlos de Rivero Vaccari ◽  
Roderick A. Corriveau ◽  
Andrei B. Belousov

A number of studies have indicated an important role for N-methyl-d-aspartate (NMDA) receptors in cell survival versus cell death decisions during neuronal development, trauma, and ischemia. Coupling of neurons by electrical synapses (gap junctions) is high or increases in neuronal networks during all three of these conditions. However, whether neuronal gap junctions contribute to NMDA receptor–regulated cell death is not known. Here we address the role of neuronal gap junction coupling in NMDA receptor–regulated cell death in developing neurons. We report that inactivation or hyperactivation of NMDA receptors induces neuronal cell death in primary hypothalamic cultures, specifically during the peak of developmental gap junction coupling. In contrast, increasing or decreasing NMDA receptor function when gap junction coupling is low has no or greatly reduced impact on cell survival. Pharmacological inactivation of gap junctions or knockout of neuronal connexin 36 prevents the cell death caused by NMDA receptor hypofunction or hyperfunction. The results indicate the critical role of neuronal gap junctions in cell death caused by increased or decreased NMDA receptor function in developing neurons. Based on these data, we propose the novel hypothesis that NMDA receptors and gap junctions work in concert to regulate neuronal survival.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
James W Smyth ◽  
Jose M Sanchez ◽  
Samy Lamouille ◽  
Ting-Ting Hong ◽  
Jacob M Vogan ◽  
...  

During each heartbeat, robust cell-cell electrical coupling via connexin 43 (Cx43) gap junctions allows billions of individual cardiomyocytes to contract in synchrony. Cx43 turns over rapidly, and altered Cx43 trafficking during disease contributes to the arrhythmias of sudden cardiac death. The overall phosphorylation status of the Cx43 protein is known to regulate gap junction coupling, but the role of many residue specific phosphorylation events remains unknown. One such residue, Ser373, forms a mode-1 14-3-3 binding motif upon phosphorylation. Given that 14-3-3 proteins are known to regulate protein trafficking, we hypothesized a role for Cx43 Ser373 phosphorylation in regulation of Cx43 gap junction coupling. Using Langendorff-perfused mouse hearts we find robust phosphorylation of Cx43 at Ser373 and Ser368 after 30 min of no-flow ischemia. In human cell lines, a S373A mutation ablated Cx43/14-3-3 complexing and 35 S pulse-chase revealed Cx43 S373A also experiences a longer half-life than wild-type Cx43. Previous reports have implicated phosphorylation of Cx43 Ser368 in PKC mediated Cx43 internalization. We find that upon activation of PKC, the Cx43 S373A mutant undergoes lower and more transient levels of phosphorylation at Ser368 than wild-type Cx43. Consistent with these data, siRNA-mediated ablation of 14-3-3 expression results in enlargement of gap junction plaque formation at cell-cell borders. In conclusion, we propose that phosphorylation of Cx43 Ser373 results in 14-3-3 binding which promotes and maintains phosphorylation of Cx43 Ser368 and the subsequent internalization of gap junction channels. These results identify for the first time a specific role for 14-3-3 proteins in regulation of Cx43 internalization during acute ischemia and contribute to the development of therapies aimed at preserving or enhancing gap junction coupling in the heart.


PLoS ONE ◽  
2011 ◽  
Vol 6 (8) ◽  
pp. e23279 ◽  
Author(s):  
Giulia Crispino ◽  
Giovanni Di Pasquale ◽  
Pietro Scimemi ◽  
Laura Rodriguez ◽  
Fabian Galindo Ramirez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document