scholarly journals Modeling second-order boundary perception: A machine learning approach

2018 ◽  
Author(s):  
Christopher DiMattina ◽  
Curtis L. Baker

AbstractBackgroundVisual pattern detection and discrimination are essential first steps for scene analysis. Numerous human psychophysical studies have modeled visual pattern detection and discrimination by estimating linear templates for classifying noisy stimuli defined by spatial variations in pixel intensities. However, such methods are poorly suited to understanding sensory processing mechanisms for complex visual stimuli such as second-order boundaries defined by spatial differences in contrast or texture.Methodology / Principal FindingsWe introduce a novel machine learning framework for modeling human perception of second-order visual stimuli, using image-computable hierarchical neural network models fit directly to psychophysical trial data. This framework is applied to modeling visual processing of boundaries defined by differences in the contrast of a carrier texture pattern, in two different psychophysical tasks: (1) boundary orientation identification, and (2) fine orientation discrimination. Cross-validation analysis is employed to optimize model hyper-parameters, and demonstrate that these models are able to accurately predict human performance on novel stimulus sets not used for fitting model parameters. We find that, like the ideal observer, human observers take a region-based approach to the orientation identification task, while taking an edge-based approach to the fine orientation discrimination task. How observers integrate contrast modulation across orientation channels is investigated by fitting psychophysical data with two models representing competing hypotheses, revealing a preference for a model which combines multiple orientations at the earliest possible stage. Our results suggest that this machine learning approach has much potential to advance the study of second-order visual processing, and we outline future steps towards generalizing the method to modeling visual segmentation of natural texture boundaries.Conclusions / SignificanceThis study demonstrates how machine learning methodology can be fruitfully applied to psychophysical studies of second-order visual processing.Author SummaryMany naturally occurring visual boundaries are defined by spatial differences in features other than luminance, for example by differences in texture or contrast. Quantitative models of such “second-order” boundary perception cannot be estimated using the standard regression techniques (known as “classification images”) commonly applied to “first-order”, luminance-defined stimuli. Here we present a novel machine learning approach to modeling second-order boundary perception using hierarchical neural networks. In contrast to previous quantitative studies of second-order boundary perception, we directly estimate network model parameters using psychophysical trial data. We demonstrate that our method can reveal different spatial summation strategies that human observers utilize for different kinds of second-order boundary perception tasks, and can be used to compare competing hypotheses of how contrast modulation is integrated across orientation channels. We outline extensions of the methodology to other kinds of second-order boundaries, including those in natural images.


BJS Open ◽  
2021 ◽  
Vol 5 (1) ◽  
Author(s):  
F Torresan ◽  
F Crimì ◽  
F Ceccato ◽  
F Zavan ◽  
M Barbot ◽  
...  

Abstract Background The main challenge in the management of indeterminate incidentally discovered adrenal tumours is to differentiate benign from malignant lesions. In the absence of clear signs of invasion or metastases, imaging techniques do not always precisely define the nature of the mass. The present pilot study aimed to determine whether radiomics may predict malignancy in adrenocortical tumours. Methods CT images in unenhanced, arterial, and venous phases from 19 patients who had undergone resection of adrenocortical tumours and a cohort who had undergone surveillance for at least 5 years for incidentalomas were reviewed. A volume of interest was drawn for each lesion using dedicated software, and, for each phase, first-order (histogram) and second-order (grey-level colour matrix and run-length matrix) radiological features were extracted. Data were revised by an unsupervised machine learning approach using the K-means clustering technique. Results Of operated patients, nine had non-functional adenoma and 10 carcinoma. There were 11 patients in the surveillance group. Two first-order features in unenhanced CT and one in arterial CT, and 14 second-order parameters in unenhanced and venous CT and 10 second-order features in arterial CT, were able to differentiate adrenocortical carcinoma from adenoma (P < 0.050). After excluding two malignant outliers, the unsupervised machine learning approach correctly predicted malignancy in seven of eight adrenocortical carcinomas in all phases. Conclusion Radiomics with CT texture analysis was able to discriminate malignant from benign adrenocortical tumours, even by an unsupervised machine learning approach, in nearly all patients.



2019 ◽  
Vol 15 (3) ◽  
pp. e1006829 ◽  
Author(s):  
Christopher DiMattina ◽  
Curtis L. Baker


Author(s):  
Siaw Ling Lo ◽  
Kar Way Tan ◽  
Eng Lieh Ouh

AbstractDo my students understand? The question that lingers in every instructor’s mind after each lesson. With the focus on learner-centered pedagogy, is it feasible to provide timely and relevant guidance to individual learners according to their levels of understanding? One of the options available is to collect reflections from learners after each lesson to extract relevant feedback so that doubts or questions can be addressed in a timely manner. In this paper, we derived a hybrid approach that leverages a novel Doubt Sentic Pattern Detection (SPD) algorithm and a machine learning model to automate the identification of doubts from students’ informal reflections. The encouraging results clearly show that the hybrid approach has the potential to be adopted in the real-world doubt detection. Using reflections as a feedback mechanism and automated doubt detection can pave the way to a promising approach for learner-centered teaching and personalized learning.



2021 ◽  
Vol 175 ◽  
pp. 110919
Author(s):  
Rafael Barbudo ◽  
Aurora Ramírez ◽  
Francisco Servant ◽  
José Raúl Romero


Author(s):  
Sven P. Heinrich ◽  
Isabell Strübin ◽  
Michael Bach

Abstract Purpose Visual evoked potential (VEP) recordings for objective visual acuity estimates are typically obtained monocularly with the contralateral eye occluded. Psychophysical studies suggest that the translucency of the occluder has only a minimal effect on the outcome of an acuity test. However, there is literature evidence for the VEP being susceptible to the type of occlusion. The present study assessed whether this has an impact on VEP-based estimates of visual acuity. Methods We obtained VEP-based acuity estimates with opaque, non-translucent occlusion of the contralateral eye, and with translucent occlusion that lets most of the light pass while abolishing the perception of any stimulus structure. The tested eye was measured with normal and artificially degraded vision, resulting in a total of 4 experimental conditions. Two different algorithms, a stepwise heuristic and a machine learning approach, were used to derive acuity from the VEP tuning curve. Results With normal vision, translucent occlusion resulted in slight, yet statistically significant better acuity estimates when analyzed with the heuristic algorithm (p = 0.014). The effect was small (mean ΔlogMAR = 0.06), not present in some participants, and without practical relevance. It was absent with the machine learning approach. With degraded vision, the difference was tiny and not statistically significant. Conclusion The type of occlusion for the contralateral eye does not substantially affect the outcome of VEP-based acuity estimation.









Sign in / Sign up

Export Citation Format

Share Document