scholarly journals Radiomics: a new tool to differentiate adrenocortical adenoma from carcinoma

BJS Open ◽  
2021 ◽  
Vol 5 (1) ◽  
Author(s):  
F Torresan ◽  
F Crimì ◽  
F Ceccato ◽  
F Zavan ◽  
M Barbot ◽  
...  

Abstract Background The main challenge in the management of indeterminate incidentally discovered adrenal tumours is to differentiate benign from malignant lesions. In the absence of clear signs of invasion or metastases, imaging techniques do not always precisely define the nature of the mass. The present pilot study aimed to determine whether radiomics may predict malignancy in adrenocortical tumours. Methods CT images in unenhanced, arterial, and venous phases from 19 patients who had undergone resection of adrenocortical tumours and a cohort who had undergone surveillance for at least 5 years for incidentalomas were reviewed. A volume of interest was drawn for each lesion using dedicated software, and, for each phase, first-order (histogram) and second-order (grey-level colour matrix and run-length matrix) radiological features were extracted. Data were revised by an unsupervised machine learning approach using the K-means clustering technique. Results Of operated patients, nine had non-functional adenoma and 10 carcinoma. There were 11 patients in the surveillance group. Two first-order features in unenhanced CT and one in arterial CT, and 14 second-order parameters in unenhanced and venous CT and 10 second-order features in arterial CT, were able to differentiate adrenocortical carcinoma from adenoma (P < 0.050). After excluding two malignant outliers, the unsupervised machine learning approach correctly predicted malignancy in seven of eight adrenocortical carcinomas in all phases. Conclusion Radiomics with CT texture analysis was able to discriminate malignant from benign adrenocortical tumours, even by an unsupervised machine learning approach, in nearly all patients.

2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


2021 ◽  
Vol 224 (2) ◽  
pp. S121-S122
Author(s):  
Ramamurthy Siripuram ◽  
Nathan R. Blue ◽  
Robert M. Silver ◽  
William A. Grobman ◽  
Uma M. Reddy ◽  
...  

2020 ◽  
Author(s):  
Daniel Oluwadara Fadokun ◽  
Ishioma Bridget Oshilike ◽  
Mike Obi Onyekonwu

2003 ◽  
Vol 46 (17) ◽  
pp. 3631-3643 ◽  
Author(s):  
Dmitry Korolev ◽  
Konstantin V. Balakin ◽  
Yuri Nikolsky ◽  
Eugene Kirillov ◽  
Yan A. Ivanenkov ◽  
...  

2018 ◽  
Vol 853 (1) ◽  
pp. 90 ◽  
Author(s):  
Federico Benvenuto ◽  
Michele Piana ◽  
Cristina Campi ◽  
Anna Maria Massone

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
L Schrutka ◽  
P Anner ◽  
B Seirer ◽  
R Rettl ◽  
F Duca ◽  
...  

Abstract Background The diagnosis of cardiac amyloidosis (CA) requires advanced imaging techniques. Typical surface ECG patterns have been described, but their diagnostic value is limited. Purpose The aim of this study was to perform a comprehensive electrophysiological characterization in CA patients and to develop a robust, easy-to-use diagnostic tool. Methods First, we applied electrocardiographic imaging (ECGI) to generate detailed electroanatomical maps in CA patients and controls. Then, a machine learning approach was used to generate a surface ECG-based diagnostic algorithm from the complex dataset. Results Areas of low voltage were localized in the basal inferior regions of both ventricles and the remaining right ventricular segments in CA. The earliest epicardial breakthrough of myocardial activation was visualized in the right ventricle. Potential maps showed an accelerated and diffuse propagation pattern. We correlated the results from ECGI with 12-lead ECG recordings. Ventricular activation correlated best with R-peak timing in leads V1 to V3. Epicardial voltage showed a strong positive correlation with R-peak amplitude in inferior leads II, III, aVF. Ten blinded cardiologists were then asked to identify CA patients by analyzing 12-lead ECGs before and after training for the defined ECG patterns. Training resulted in significant improvements in the detection rate of CA with an AUC of 0.69 before and 0.97 after training (Figure). Conclusion Using a machine learning approach, a robust ECG-based tool was developed to detect CA from detailed electroanatomical mapping of CA patients. The developed tool proved to be a simple and reliable diagnostic tool to suspect CA without the aid of advanced imaging modalities. FUNDunding Acknowledgement Type of funding sources: None.


Sign in / Sign up

Export Citation Format

Share Document