scholarly journals A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease

2018 ◽  
Author(s):  
Simeon Spasov ◽  
Luca Passamonti ◽  
Andrea Duggento ◽  
Pietro Liò ◽  
Nicola Toschi

AbstractSome forms of mild cognitive impairment (MCI) can be the clinical precursor of severe dementia like Alzheimer’s disease (AD), while other types of MCI tend to remain stable over-time and do not progress to AD pathology. To choose an effective and personalized treatment for AD, we need to identify which MCI patients are at risk of developing AD and which are not.Here, we present a novel deep learning architecture, based on dual learning and an ad hoc layer for 3D separable convolutions, which aims at identifying those people with MCI who have a high likelihood of developing AD. Our deep learning procedures combine structural magnetic resonance imaging (MRI), demographic, neuropsychological, and APOe4 genotyping data as input measures. The most novel characteristics of our machine learning model compared to previous ones are as follows: 1) multi-tasking, in the sense that our deep learning model jointly learns to simultaneously predict both MCI to AD conversion, and AD vs healthy classification which facilitates the relevant feature extraction for prognostication; 2) the neural network classifier employs relatively few parameters compared to other deep learning architectures (we use ~550,000 network parameters, orders of magnitude lower than other network designs) without compromising network complexity and hence significantly limits data-overfitting; 3) both structural MRI images and warp field characteristics, which quantify the amount of volumetric change compared to the common template, were used as separate input streams to extract as much information as possible from the MRI data. All the analyses were performed on a subset of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, for a total of n=785 participants (192 AD, 409 MCI, and184 healthy controls (HC)).We found that the most predictive combination of inputs included the structural MRI images and the demographic, neuropsychological, and APOe4 data, while the warp field metric added little predictive value. We achieved an area under the ROC curve (AUC) of 0.925 with a 10-fold cross-validated accuracy of 86%, a sensitivity of 87.5% and specificity of 85% in classifying MCI patients who developed AD in three years’ time from those individuals showing stable MCI over the same time-period. To the best of our knowledge, this is the highest performance reported on a test set achieved in the literature using similar data. The same network provided an AUC of 1 and 100% accuracy, sensitivity and specificity when classifying NC from AD. We also demonstrated that our classification framework was robust to different co-registration templates and possibly irrelevant features / image sections.Our approach is flexible and can in principle integrate other imaging modalities, such as PET, and a more diverse group of clinical data. The convolutional framework is potentially applicable to any 3D image dataset and gives the flexibility to design a computer-aided diagnosis system targeting the prediction of any medical condition utilizing multi-modal imaging and tabular clinical data.

2021 ◽  
Author(s):  
Sheng Liu ◽  
Arjun Masurkar ◽  
Henry Rusinek ◽  
Jingyun Chen ◽  
Ben Zhang ◽  
...  

Early diagnosis of Alzheimer's disease plays a pivotal role in patient care and clinical trials. In this study, we have developed a new approach based on 3D deep convolutional neural networks to accurately differentiate mild Alzheimer's disease dementia from mild cognitive impairment and cognitively normal individuals using structural MRIs. For comparison, we have built a reference model based on the volumes and thickness of previously reported brain regions that are known to be implicated in disease progression. We validate both models on an internal held-out cohort from The Alzheimer's Disease Neuroimaging Initiative (ADNI) and on an external independent cohort from The National Alzheimer's Coordinating Center (NACC). The deep-learning model is more accurate and significantly faster than the volume/thickness model. The model can also be used to forecast progression: subjects with mild cognitive impairment misclassified as having mild Alzheimer's disease dementia by the model were faster to progress to dementia over time. An analysis of the features learned by the proposed model shows that it relies on a wide range of regions associated with Alzheimer's disease. These findings suggest that deep neural networks can automatically learn to identify imaging biomarkers that are predictive of Alzheimer's disease, and leverage them to achieve accurate early detection of the disease.


NeuroImage ◽  
2020 ◽  
Vol 215 ◽  
pp. 116795 ◽  
Author(s):  
F.R. Farina ◽  
D.D. Emek-Savaş ◽  
L. Rueda-Delgado ◽  
R. Boyle ◽  
H. Kiiski ◽  
...  

2019 ◽  
Author(s):  
FR Farina ◽  
DD Emek-Savaş ◽  
L Rueda-Delgado ◽  
R Boyle ◽  
H Kiiski ◽  
...  

AbstractAlzheimer’s disease (AD) is a neurodegenerative disorder characterised by severe cognitive decline and loss of autonomy. AD is the leading cause of dementia. AD is preceded by mild cognitive impairment (MCI). By 2050, 68% of new dementia cases will occur in low- and middle-income countries. In the absence of objective biomarkers, psychological assessments are typically used to diagnose MCI and AD. However, these require specialist training and rely on subjective judgements. The need for low-cost, accessible and objective tools to aid AD and MCI diagnosis is therefore crucial. Electroencephalography (EEG) has potential as one such tool: it is relatively inexpensive (cf. magnetic resonance imaging; MRI) and is portable. In this study, we collected resting state EEG, structural MRI and rich neuropsychological data from older adults (55+ years) with AD, with MCI and from healthy controls (n~60 per group). Our goal was to evaluate the utility of EEG, relative to MRI, for the classification of MCI and AD. We also assessed the performance of combined EEG and behavioural (Mini-Mental State Examination; MMSE) and structural MRI classification models. Resting state EEG classified AD and HC participants with moderate accuracy (AROC=0.76), with lower accuracy when distinguishing MCI from HC participants (AROC=0.67). The addition of EEG data to MMSE scores had no additional value compared to MMSE alone. Structural MRI out-performed EEG (AD vs HC, AD vs MCI: AROCs=1.00; HC vs MCI: AROC=0.73). Resting state EEG does not appear to be a suitable tool for classifying AD. However, EEG classification accuracy was comparable to structural MRI when distinguishing MCI from healthy aging, although neither were sufficiently accurate to have clinical utility. This is the first direct comparison of EEG and MRI as classification tools in AD and MCI participants.


2021 ◽  
Author(s):  
Guixia Kang ◽  
Peiqi Luo ◽  
Xin Xu ◽  
Ying Han ◽  
Xuemei Li ◽  
...  

Abstract Objective: To assess the progression of volume changes in hippocampus and its subfields of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI), and to explore the association of the hippocampus and its subfields volumes with cognitive function.Methods: Five groups of participants including 35 normal controls (NC) persons, 30 MCI patients, 30 Mild AD patients, 30 Moderate AD patients and 8 Severe AD patients received structural MRI brain scans. Freesurfer6.0 was used for automatically segmentation of MRI, and the left and right hippocampus were respectively divided into 12 subfields. By statistical analysis, the volumes of hippocampus and its subfields were compared between the five groups, and the correlation of the volumes with Mini-mental State Examination (MMSE) score was analyzed.Result & Conclusion: In the disease, each hippocampal subfield shows an uneven atrophy trajectory; The volumes of the subiculum and presubiculum are significantly different between Mild AD and MCI, which can contribute to the early diagnosis of AD; Parasubiculum is the least sensitive subfield for volume atrophy of AD, while subiculum, presubiculum, CA1, molecular_layer_HP and fimbria show much more significant volume changes. Meanwhile the volumes of these five subfields are positively correlated with MMSE, which may help in stage division of AD; Compared with the right hippocampus, the volume atrophy on the left side is more significantly, and the volumes are more significantly correlated with MMSE, So the left hippocampus and its subfields may provide a higher reference value for the clinical evaluation of AD than the right side.


NeuroImage ◽  
2019 ◽  
Vol 189 ◽  
pp. 276-287 ◽  
Author(s):  
Simeon Spasov ◽  
Luca Passamonti ◽  
Andrea Duggento ◽  
Pietro Liò ◽  
Nicola Toschi

Sign in / Sign up

Export Citation Format

Share Document