scholarly journals Analysis and Prediction of Unplanned Intensive Care Unit Readmission using Recurrent Neural Networks with Long Short-Term Memory

2018 ◽  
Author(s):  
Yu-Wei Lin ◽  
Yuqian Zhou ◽  
Faraz Faghri ◽  
Michael J. Shaw ◽  
Roy H. Campbell

AbstractBackgroundUnplanned readmission of a hospitalized patient is an extremely undesirable outcome as the patient may have been exposed to additional risks. The rates of unplanned readmission are, therefore, regarded as an important performance indicator for the medical quality of a hospital and healthcare system. Identifying high-risk patients likely to suffer from readmission before release benefits both the patients and the medical providers. The emergence of machine learning to detect hidden patterns in complex, multi-dimensional datasets provides unparalleled opportunities to develop efficient discharge decision-making support system for physicians.Methods and FindingsWe used supervised machine learning approaches for ICU readmission prediction. We used machine learning methods on comprehensive, longitudinal clinical data from the MIMIC-III to predict the ICU readmission of patients within 30 days of their discharge. We have utilized recent machine learning techniques such as Recurrent Neural Networks (RNN) with Long Short-Term Memory (LSTM), by this we have been able incorporate the multivariate features of EHRs and capture sudden fluctuations in chart event features (e.g. glucose and heart rate) that are significant in time series with temporal dependencies, which cannot be properly captured by traditional static models, but can be captured by our proposed deep neural network based model. We incorporate multiple types of features including chart events, demographic, and ICD9 embeddings. Our machine learning models identifies ICU readmissions at a higher sensitivity rate (0.742) and an improved Area Under the Curve (0.791) compared with traditional methods. We also illustrate the importance of each portion of the features and different combinations of the models to verify the effectiveness of the proposed model.ConclusionOur manuscript highlights the ability of machine learning models to improve our ICU decision making accuracy, and is a real-world example of precision medicine in hospitals. These data-driven results enable clinicians to make assisted decisions within their patient cohorts. This knowledge could have immediate implications for hospitals by improving the detection of possible readmission. We anticipate that machine learning models will improve patient counseling, hospital administration, allocation of healthcare resources and ultimately individualized clinical care.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3678
Author(s):  
Dongwon Lee ◽  
Minji Choi ◽  
Joohyun Lee

In this paper, we propose a prediction algorithm, the combination of Long Short-Term Memory (LSTM) and attention model, based on machine learning models to predict the vision coordinates when watching 360-degree videos in a Virtual Reality (VR) or Augmented Reality (AR) system. Predicting the vision coordinates while video streaming is important when the network condition is degraded. However, the traditional prediction models such as Moving Average (MA) and Autoregression Moving Average (ARMA) are linear so they cannot consider the nonlinear relationship. Therefore, machine learning models based on deep learning are recently used for nonlinear predictions. We use the Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural network methods, originated in Recurrent Neural Networks (RNN), and predict the head position in the 360-degree videos. Therefore, we adopt the attention model to LSTM to make more accurate results. We also compare the performance of the proposed model with the other machine learning models such as Multi-Layer Perceptron (MLP) and RNN using the root mean squared error (RMSE) of predicted and real coordinates. We demonstrate that our model can predict the vision coordinates more accurately than the other models in various videos.


Author(s):  
Suleka Helmini ◽  
Nadheesh Jihan ◽  
Malith Jayasinghe ◽  
Srinath Perera

In the retail domain, estimating the sales before actual sales become known plays a key role in maintaining a successful business. This is due to the fact that most crucial decisions are bound to be based on these forecasts. Statistical sales forecasting models like ARIMA (Auto-Regressive Integrated Moving Average), can be identified as one of the most traditional and commonly used forecasting methodologies. Even though these models are capable of producing satisfactory forecasts for linear time series data they are not suitable for analyzing non-linear data. Therefore, machine learning models (such as Random Forest Regression, XGBoost) have been employed frequently as they were able to achieve better results using non-linear data. The recent research shows that deep learning models (e.g. recurrent neural networks) can provide higher accuracy in predictions compared to machine learning models due to their ability to persist information and identify temporal relationships. In this paper, we adopt a special variant of Long Short Term Memory (LSTM) network called LSTM model with peephole connections for sales prediction. We first build our model using historical features for sales forecasting. We compare the results of this initial LSTM model with multiple machine learning models, namely, the Extreme Gradient Boosting model (XGB) and Random Forest Regressor model(RFR). We further improve the prediction accuracy of the initial model by incorporating features that describe the future that is known to us in the current moment, an approach that has not been explored in previous state-of-the-art LSTM based forecasting models. The initial LSTM model we develop outperforms the machine learning models achieving 12% - 14% improvement whereas the improved LSTM model achieves 11\% - 13\% improvement compared to the improved machine learning models. Furthermore, we also show that our improved LSTM model can obtain a 20% - 21% improvement compared to the initial LSTM model, achieving significant improvement.


2021 ◽  
Vol 7 (2) ◽  
pp. 113-121
Author(s):  
Firman Pradana Rachman

Setiap orang mempunyai pendapat atau opini terhadap suatu produk, tokoh masyarakat, atau pun sebuah kebijakan pemerintah yang tersebar di media sosial. Pengolahan data opini itu di sebut dengan sentiment analysis. Dalam pengolahan data opini yang besar tersebut tidak hanya cukup menggunakan machine learning, namun bisa juga menggunakan deep learning yang di kombinasikan dengan teknik NLP (Natural Languange Processing). Penelitian ini membandingkan beberapa model deep learning seperti CNN (Convolutional Neural Network), RNN (Recurrent Neural Networks), LSTM (Long Short-Term Memory) dan beberapa variannya untuk mengolah data sentiment analysis dari review produk amazon dan yelp.


2019 ◽  
Author(s):  
Suleka Helmini ◽  
Nadheesh Jihan ◽  
Malith Jayasinghe ◽  
Srinath Perera

In the retail domain, estimating the sales before actual sales become known plays a key role in maintaining a successful business. This is due to the fact that most crucial decisions are bound to be based on these forecasts. Statistical sales forecasting models like ARIMA (Auto-Regressive Integrated Moving Average), can be identified as one of the most traditional and commonly used forecasting methodologies. Even though these models are capable of producing satisfactory forecasts for linear time series data they are not suitable for analyzing non-linear data. Therefore, machine learning models (such as Random Forest Regression, XGBoost) have been employed frequently as they were able to achieve better results using non-linear data. The recent research shows that deep learning models (e.g. recurrent neural networks) can provide higher accuracy in predictions compared to machine learning models due to their ability to persist information and identify temporal relationships. In this paper, we adopt a special variant of Long Short Term Memory (LSTM) network called LSTM model with peephole connections for sales prediction. We first build our model using historical features for sales forecasting. We compare the results of this initial LSTM model with multiple machine learning models, namely, the Extreme Gradient Boosting model (XGB) and Random Forest Regressor model(RFR). We further improve the prediction accuracy of the initial model by incorporating features that describe the future that is known to us in the current moment, an approach that has not been explored in previous state-of-the-art LSTM based forecasting models. The initial LSTM model we develop outperforms the machine learning models achieving 12% - 14% improvement whereas the improved LSTM model achieves 11\% - 13\% improvement compared to the improved machine learning models. Furthermore, we also show that our improved LSTM model can obtain a 20% - 21% improvement compared to the initial LSTM model, achieving significant improvement.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 535
Author(s):  
Thomas Adler ◽  
Manuel Erhard ◽  
Mario Krenn ◽  
Johannes Brandstetter ◽  
Johannes Kofler ◽  
...  

We demonstrate how machine learning is able to model experiments in quantum physics. Quantum entanglement is a cornerstone for upcoming quantum technologies, such as quantum computation and quantum cryptography. Of particular interest are complex quantum states with more than two particles and a large number of entangled quantum levels. Given such a multiparticle high-dimensional quantum state, it is usually impossible to reconstruct an experimental setup that produces it. To search for interesting experiments, one thus has to randomly create millions of setups on a computer and calculate the respective output states. In this work, we show that machine learning models can provide significant improvement over random search. We demonstrate that a long short-term memory (LSTM) neural network can successfully learn to model quantum experiments by correctly predicting output state characteristics for given setups without the necessity of computing the states themselves. This approach not only allows for faster search, but is also an essential step towards the automated design of multiparticle high-dimensional quantum experiments using generative machine learning models.


Sign in / Sign up

Export Citation Format

Share Document