scholarly journals Atypically larger variability of resource allocation accounts for visual working memory deficits in schizophrenia

2018 ◽  
Author(s):  
Yi-Jie Zhao ◽  
Tianye Ma ◽  
Xuemei Ran ◽  
Li Zhang ◽  
Ru-Yuan Zhang ◽  
...  

AbstractSchizophrenia patients are known to have profound deficits in visual working memory (VWM), and almost all previous studies attribute the deficits to decreased memory capacity. This account, however, ignores the potential contributions of other VWM components (e.g., memory precision). Here, we measure the VWM performance of schizophrenia patients and healthy control subjects on two classical delay-estimation tasks. Moreover, we thoroughly evaluate several established computational models of VWM to compare the performance of the two groups. We find that the model assuming variable precision across items and trials is the best model to explain the performance of both groups. According to the variable-precision model, schizophrenia subjects exhibit abnormally larger variability of allocating memory resources rather than resources per se. These results invite a rethink of the widely accepted decreased-capacity theory and propose a new perspective on the diagnosis and rehabilitation of schizophrenia.

2021 ◽  
Vol 17 (11) ◽  
pp. e1009544
Author(s):  
Yi-Jie Zhao ◽  
Tianye Ma ◽  
Li Zhang ◽  
Xuemei Ran ◽  
Ru-Yuan Zhang ◽  
...  

Working memory (WM) deficits have been widely documented in schizophrenia (SZ), and almost all existing studies attributed the deficits to decreased capacity as compared to healthy control (HC) subjects. Recent developments in WM research suggest that other components, such as precision, also mediate behavioral performance. It remains unclear how different WM components jointly contribute to deficits in schizophrenia. We measured the performance of 60 SZ (31 females) and 61 HC (29 females) in a classical delay-estimation visual working memory (VWM) task and evaluated several influential computational models proposed in basic science of VWM to disentangle the effect of various memory components. We show that the model assuming variable precision (VP) across items and trials is the best model to explain the performance of both groups. According to the VP model, SZ exhibited abnormally larger variability of allocating memory resources rather than resources or capacity per se. Finally, individual differences in the resource allocation variability predicted variation of symptom severity in PSZ, highlighting its functional relevance to schizophrenic pathology. This finding was further verified using distinct visual features and subject cohorts. These results provide an alternative view instead of the widely accepted decreased-capacity theory and highlight the key role of elevated resource allocation variability in generating atypical VWM behavior in schizophrenia. Our findings also shed new light on the utility of Bayesian observer models to characterize mechanisms of mental deficits in clinical neuroscience.


2019 ◽  
Author(s):  
Christine Salahub ◽  
Stephen Emrich

Individuals with anxiety have attentional biases toward threat-related distractors. This deficit in attentional control has been shown to impact visual working memory (VWM) filtering efficiency, as anxious individuals inappropriately store threatening distractors in VWM. It remains unclear, however, whether this mis-allocation of memory resources is due to inappropriate attentional enhancement of threatening distractors, or to a failure in suppression. Here, we used a systematically lateralized VWM task with fearful and neutral faces to examine event-related potentials related to attentional selection (N2pc), suppression (PD), and working memory maintenance (CDA). We found that state anxiety correlated with attentional enhancement of threat-related distractors, such that more anxious individuals had larger N2pc amplitudes toward fearful distractors than neutral distractors. However, there was no correlation between anxiety and memory storage of fearful distractors (CDA). These findings demonstrate that anxiety biases attention toward fearful distractors, but that this bias does not always guarantee increased memory storage of threat-related distractors.


2021 ◽  
Author(s):  
◽  
Wei Dai

<p>The present research comprises four experiments designed to explore the role of visual and phonological working memory resources in carry operations or intermediate solutions in complex mental addition and multiplication. A special consideration was given to the effect of arithmetic operation on the relative involvement of visual and phonological resources in complex addition and multiplication.  A pilot study was conducted prior to the experiments, aiming to examine the suitability of visual and phonological stimuli for change detection and working memory capacity estimation. Two staff of Victoria University of Wellington with normal or corrected vision attended the pilot study as participants. Pilot Experiments 1 to 4 tested the suitability for probing visual working memory (VWM) capacity of two types of visual stimulus with different feature dimensions: bars of different orientations and Gabor patches with different orientations and spatial frequencies. A single-probe change-detection experimental paradigm was used, with participants making decisions about whether or not probe items were the same as memory items presented previously. Both presentation durations and set sizes were manipulated. Stable estimates of visual working memory capacities were found when Gabor patches with varied spatial frequencies were used, suggesting its utility as a probe for estimating visual working memory capacity. Pilot Experiment 5 was designed to examine the suitability of pronounceable consonant-vowel-consonant non-words as a probe of phonological working memory (PWM). Valid estimates of PWM capacity were found for both participants, suggesting the suitability of phonological non-words as phonological stimuli of assessing PWM capacities and interfering with information phonologically-represented and maintained in working memory.  Experiments 1 to 4 investigated the relative involvement of visual and phonological working memory resources in carry operations or intermediate solutions in mental addition and multiplication. Fifty-six undergraduate students of Victoria University of Wellington participated all experiments, and 48 of them provided valid data for final analysis. A dual-task interference paradigm was used in all experiments, with arithmetic tasks and visual/phonological change-detection tasks either performed alone, or simultaneously. For arithmetic tasks, double-digit addition problems and multiplication problems comprising one single-digit and one double-digit were presented horizontally and continuously, and participants reported the final solutions verbally. For visual change-detection tasks, study items were visually presented to participants for 1,000ms before they disappeared. After a 4000ms retention interval, a probe item was presented and participants judged whether the probe item was the same as one of the memory items. For phonological change-detection tasks, phonological nonwords were verbally presented to participants sequentially. After a 4000ms retention interval, a probe nonword was presented to participants, and they indicated whether or not the probe was the same as one of the study non-words. Both numbers of carry operations involved in the arithmetic problems (zero, one, and two) and levels of visual/phonological loads (low, medium, and high) were manipulated in all experiments.   For all experiments, the effect of the number of carry operations on calculation performance was observed: arithmetic problems involving more carry operations were solved less rapidly and accurately. This effect was enlarged by concurrent visual and phonological loads, evidenced by significant interactions between task conditions and number of carry operations observed in the accuracy analyses of the arithmetic tasks in all experiments except Experiment 2, in which multiplication problems were solved under visual loads. These findings suggest that both visual and phonological resources are required for the temporary storage of intermediate solutions or carry information in mental addition, while for mental multiplication, only evidence for a role of phonological representations in carry operations was found.  For all experiments, the greater performance impairment of carry problems than no-carry problems associated with the presence of working memory loads was not further increased by increasing load level: There were no significant three-way interactions between task conditions, number of carry operations and load levels in accuracy analyses of arithmetic tasks. One possible explanation for this absence of significant three-way interactions might be attributable to some participants switching between phonological and visual working memory for the temporary storage of carrier information or intermediate solutions as a result of decreasing amount of available phonological or visual working memory resources.  In conclusion, the findings of the present research provide support for a role of both visual and phonological working memory resources in carry operations in mental addition, and a role of phonological working memory resources in carry operation in mental multiplication. Thus, it can be concluded that solving mental arithmetic problems involving carry-operations requires working memory resources. However, these results contradict the prediction of the Triple Code Model, which assumes addition mainly relies on visual processing, and multiplication mainly relies on verbal processing, while complex mental arithmetic is solved with the aid of visual processing regardless of the arithmetic operation. Thus, these results challenge the operation-specific involvement of working memory resources in complex mental arithmetic. However, it should be noted that the same arithmetic problems were solved three times by the same participants, which might have encouraged more activation in phonological processing than visual processing due to the practice effect.</p>


Author(s):  
Peter Shepherdson

AbstractWhat influences the extent to which perceptual information interferes with the contents of visual working memory? In two experiments using a combination of change detection and continuous reproduction tasks, I show that binding novelty is a key factor in producing interference. In Experiment 2, participants viewed arrays of colored circles, then completed consecutive change detection and recall tests of their memory for stochastically independent items from the same array. When the probe used in the change detection test was novel (i.e., required a “change” response), subsequent recall performance was worse than in trials with matching (i.e., “no change”) probes, irrespective of whether or not the same item was tested in both phases. In Experiment 2, participants viewed arrays of oriented arrows, then completed a change detection (requiring memory) or direction judgement (not requiring memory) test, followed by recalling a stochastically independent item. Again, novel probes in the first phase led to worse recall, irrespective of whether the initial task required memory. This effect held whether the probe was wholly novel (i.e., a new feature presented at any location) or simply involved a novel binding (i.e., an old feature presented at a new location). These findings highlight the role of novelty in visual interference, consistent with the assumptions of computational models of WM, and suggest that new bindings of old information are sufficient to produce such interference.


2013 ◽  
Vol 13 (9) ◽  
pp. 1360-1360
Author(s):  
D. W. Sutterer ◽  
D. E. Anderson ◽  
E. Awh

2012 ◽  
Vol 12 (9) ◽  
pp. 350-350 ◽  
Author(s):  
N. Zokaei ◽  
N. Gorgoraptis ◽  
M. Husain

Sign in / Sign up

Export Citation Format

Share Document