scholarly journals Revisiting the window of opportunity for co-transcriptional splicing efficiency and fidelity

2018 ◽  
Author(s):  
Vahid Aslanzadeh ◽  
Jean D. Beggs

AbstractRecently, we reported that changes in transcription elongation rate affect the efficiency and fidelity of precursor mRNA (pre-mRNA) splicing, especially of ribosomal protein (RP) transcripts. Here, we analyse these results in more detail, finding that the majority of RP transcripts with non-consensus 5’ splice sites have reduced splicing efficiency with faster transcription elongation, and improved efficiency with slower elongation, as might be predicted by the “window of opportunity” model for co-transcriptional splicing. In contrast, both faster and slower elongation reduce splicing fidelity, often for the same splicing events, and both faster and slower transcription increase fidelity with a different set of splicing events. We propose that certain non-consensus 5’ splice sites in ribosomal protein transcripts confer a stronger effect of transcription elongation rate on splicing efficiency, possibly by causing a rate-limiting step that delays activation of spliceosomes. The effects of different rates of transcription elongation on splicing fidelity are more difficult to explain by a simple window of opportunity model. We discuss these new findings in the context of current models of co-transcriptional splicing and splicing fidelity.


2021 ◽  
Author(s):  
Long Chen ◽  
Yu Huang ◽  
Yonggang Xue ◽  
Zhihui Jia ◽  
Wenliang Wang

Abstract. Hydroxyalkyl hydroperoxides (HHPs), formed in the reactions of Criegee intermediates (CIs) with water vapour, play essential roles in the formation of secondary organic aerosol (SOA) under atmospheric conditions. However, the transformation mechanism for OH-initiated oxidation of HHPs is remain incompletely understood. Herein, the quantum chemical and kinetics modeling methods are applied to insight into the detailed mechanisms of OH-initiated oxidation of distinct HHPs formed form the reactions of CH2OO, anti-CH3CHOO and (CH3)2COO) with water vapor. The calculations show that H-abstraction by OH radical from the -OOH group of distinct HHPs is predominate as the main products peroxyl radicals (RO2), and the barrier of dominant pathway is increased as the number of methyl group is increased. In pristine environments, the self-reaction of RO2 radical initially produces tetroxide intermediate via a head-to-head interaction, then it decomposes into propagation and termination products through the asymmetric two-step O-O bond scission, in which the rate-limiting step is the first O-O bond cleavage. The barrier height of distinct RO2 radicals reactions with HO2 radical is independent on the number of methyl substitution. Compared to the rate coefficient of parent system, it is increased by a factor of 3–5 when one or two methyl groups introduce into the C1-position. The autoxidation of RO2 radicals are unlikely to proceed in the atmosphere due to their dramatically high barriers and strongly endergonic. In urban environments, the rate-limiting step is the hydrogen abstraction by O2 in the processes of HOCH2OO radical reaction with NO, while it becomes the O-O bond scission when one or two methyl substitutions occur at the C1-position of HOCH2OO radical. These new findings are expected to deepen our current understanding for the photochemistry oxidation of hydroperoxides under realistic atmospheric conditions.



1978 ◽  
Vol 39 (02) ◽  
pp. 496-503 ◽  
Author(s):  
P A D’Amore ◽  
H B Hechtman ◽  
D Shepro

SummaryOrnithine decarboxylase (ODC) activity, the rate-limiting step in the synthesis of polyamines, can be demonstrated in cultured, bovine, aortic endothelial cells (EC). Serum, serotonin and thrombin produce a rise in ODC activity. The serotonin-induced ODC activity is significantly blocked by imipramine (10-5 M) or Lilly 11 0140 (10-6M). Preincubation of EC with these blockers together almost completely depresses the 5-HT-stimulated ODC activity. These observations suggest a manner by which platelets may maintain EC structural and metabolic soundness.



Diabetes ◽  
1993 ◽  
Vol 42 (2) ◽  
pp. 296-306 ◽  
Author(s):  
D. C. Bradley ◽  
R. A. Poulin ◽  
R. N. Bergman


2020 ◽  
Author(s):  
Chang-Sheng Wang ◽  
Sabrina Monaco ◽  
Anh Ngoc Thai ◽  
Md. Shafiqur Rahman ◽  
Chen Wang ◽  
...  

A catalytic system comprised of a cobalt-diphosphine complex and a Lewis acid (LA) such as AlMe3 has been found to promote hydrocarbofunctionalization reactions of alkynes with Lewis basic and electron-deficient substrates such as formamides, pyridones, pyridines, and azole derivatives through site-selective C-H activation. Compared with known Ni/LA catalytic system for analogous transformations, the present catalytic system not only feature convenient set up using inexpensive and bench-stable precatalyst and ligand such as Co(acac)3 and 1,3-bis(diphenylphosphino)propane (dppp), but also display distinct site-selectivity toward C-H activation of pyridone and pyridine derivatives. In particular, a completely C4-selective alkenylation of pyridine has been achieved for the first time. Mechanistic stidies including DFT calculations on the Co/Al-catalyzed addition of formamide to alkyne have suggested that the reaction involves cleavage of the carbamoyl C-H bond as the rate-limiting step, which proceeds through a ligand-to-ligand hydrogen transfer (LLHT) mechanism leading to an alkyl(carbamoyl)cobalt intermediate.



1979 ◽  
Vol 44 (3) ◽  
pp. 912-917 ◽  
Author(s):  
Vladimír Macháček ◽  
Said A. El-bahai ◽  
Vojeslav Štěrba

Kinetics of formation of 2-imino-4-thiazolidone from S-ethoxycarbonylmethylisothiouronium chloride has been studied in aqueous buffers and dilute hydrochloric acid. The reaction is subject to general base catalysis, the β value being 0.65. Its rate limiting step consists in acid-catalyzed splitting off of ethoxide ion from dipolar tetrahedral intermediate. At pH < 2 formation of this intermediate becomes rate-limiting; rate constant of its formation is 2 . 104 s-1.



Sign in / Sign up

Export Citation Format

Share Document