Kinetics of cyclization of S-ethoxycarbonylmethylisothiouronium chloride to 2-imino-4-thiazolidone

1979 ◽  
Vol 44 (3) ◽  
pp. 912-917 ◽  
Author(s):  
Vladimír Macháček ◽  
Said A. El-bahai ◽  
Vojeslav Štěrba

Kinetics of formation of 2-imino-4-thiazolidone from S-ethoxycarbonylmethylisothiouronium chloride has been studied in aqueous buffers and dilute hydrochloric acid. The reaction is subject to general base catalysis, the β value being 0.65. Its rate limiting step consists in acid-catalyzed splitting off of ethoxide ion from dipolar tetrahedral intermediate. At pH < 2 formation of this intermediate becomes rate-limiting; rate constant of its formation is 2 . 104 s-1.

1996 ◽  
Vol 61 (6) ◽  
pp. 951-956 ◽  
Author(s):  
Jaroslava Horáčková ◽  
Vojeslav Štěrba

The kinetics of reaction of 4-methoxybenzenediazonium ion (3) with 2,6-dihydroxypyridine (1) has been studied in methoxyacetate, acetate, and phosphate buffers. The rate-limiting step is the formation of the reaction intermediate and not the splitting off of the proton (which was detected in the cases of citrazinic acid and its methyl ester). Therefrom it follows that for 2,6-dihydroxypyridine derivatives the steric hindrance to the formation of the Wheland intermediate exerted by CO2- and CO2CH3 groups represents a necessary condition for the rate-limiting splitting off of the proton and, hence, for the existence of general base catalysis.


1987 ◽  
Vol 52 (5) ◽  
pp. 1285-1297
Author(s):  
Jaromír Kaválek ◽  
Ludmila Hejtmánková ◽  
Vojeslav Štěrba

Kinetics of hydrochloric acid-catalyzed solvolysis of substituted phenyl and methyl N-phenylbenzimidoesters have been studied in methanol, 50 vol. % aqueous methanol, and 50 vol. % aqueous tetrahydrofurane, and the composition of the reaction products has been determined. The rate-limiting step consists in addition of water or methanol to the protonated substrate. The reaction of methyl N-phenylbenzimidoester with both water and methanol and that of substituted phenyl N-phenylbenzimidoesters with methanol produce aniline, the ester (or orthoester) and the corresponding phenol. The reaction of substituted phenyl N-phenylbenzimidoesters with water gives both the neutral tetrahedral intermediate (which is decomposed into phenol and anilide) and the protonated intermediate (which produces aniline and the ester). At the same proton concentration the phenol content increases with increasing value of the σ constant of the substituent.


1991 ◽  
Vol 56 (8) ◽  
pp. 1701-1710 ◽  
Author(s):  
Jaromír Kaválek ◽  
Vladimír Macháček ◽  
Miloš Sedlák ◽  
Vojeslav Štěrba

The cyclization kinetics of N-(2-methylcarbonylphenyl)-N’-methylsulfonamide (IIb) into 3-methyl-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (Ib) has been studied in ethanolamine, morpholine, and butylamine buffers and in potassium hydroxide solution. The cyclization is subject to general base and general acid catalysis. The value of the Bronsted coefficient β is about 0.1, which indicates that splitting off of the proton from negatively charged tetrahedral intermediate represents the rate-limiting and thermodynamically favourable step. In the solutions of potassium hydroxide the cyclization of dianion of the starting ester IIb probably becomes the rate-limiting step.


1981 ◽  
Vol 46 (9) ◽  
pp. 2104-2109
Author(s):  
Jaromír Toman ◽  
Vojeslav Štěrba ◽  
Jiří Klicnar

Tautomerism of the title compound in methanol in the presence of buffers is subject to general acid and base catalysis. The rate-limiting step of the acid-catalyzed reaction consists in addition of the proton to the methine carbon atom of the enamine form, whereas that of the base catalyzed reaction consists in protonation of the formed conjugated base of the enamine. Solvent effects on the equilibrium constant of the isomerization have been measured.


1992 ◽  
Vol 57 (9) ◽  
pp. 1915-1927
Author(s):  
Jaroslava Horáčková ◽  
Vojeslav Štěrba

The kinetics have been measured of the reactions of 4-nitro-, 4-chloro-, and 4-methoxybenzenediazonium ions with substituted phenylazo derivatives of citrazinic acid in buffer solutions, and the pKa values of the corresponding monoazo and bisazo compounds have been estimated. The reactions of 4-nitrobenzenediazonium ion with 4-chloro- and 4-methoxyphenylazo derivatives and of 4-chlorobenzenediazonium ion with 4-methoxyphenylazo derivative were accompanied by a partial replacement of the substituted phenylazo group by the 4-nitro- and 4-chlorophenylazo groups, respectively. The reactions of 4-chloro- and 4-methoxybenzenediazonium ions are subject to general base catalysis, the rate-limiting step consisting in the splitting off of the proton from the tetrahedral intermediate; with 4-nitrobenzenediazonium ion the reaction rate is limited by the formation of the tetrahedral intermediate.


1986 ◽  
Vol 73 ◽  
Author(s):  
Bruce D. Kay ◽  
Roger A. Assink

ABSTRACTHigh resolution 1H NMR spectroscopy at high magnetic fields is employed to study the reaction kinetics of the Si(OCH3)4:CH3OH:H2O sol-gel system. Both the overall extent of reaction as a function of time and the equilibrium distribution of species are measured. In acid catalyzed solution, condensation is the rate limiting step while in base catalyzed solution, hydrolysis becomes rate limiting. A kinetic model in which the rate of hydrolysis is assumed to be independent of the adjacent functional groups is presented. This model correctly predicts the distribution of product species during the initial stages of the sol-gel reaction.


1999 ◽  
Vol 64 (10) ◽  
pp. 1654-1672 ◽  
Author(s):  
Miroslav Ludwig ◽  
Iva Bednářová ◽  
Patrik Pařík

Four N-(phenylazo)-substituted saturated nitrogen heterocyclics were synthesized and their structure was confirmed by 1H and 13C NMR spectroscopy. The kinetics of their acid-catalyzed decomposition were studied at various concentrations of the catalyst (pivalic acid) in 40, 30, and 20% (v/v) aqueous ethanol at 25 °C. The values obtained for the observed rate constants were processed by the non-linear regression method according to the suggested kinetic models and by the method of principal component analysis (PCA). The interpretation of the results has shown that the acid-catalyzed decomposition of the heterocyclics under the conditions used proceeds by the mechanism of general acid catalysis, the proton being the dominant catalyst particle of the rate-limiting step. The decrease in the observed rate constant at higher concentrations of the catalyst was explained by the formation of a non-reactive complex composed of the undissociated acid and the respective N-(phenylazo)heterocycle. The effect of medium and steric effect of the heterocyclic moiety on the values of catalytic rate constant are discussed.


Sign in / Sign up

Export Citation Format

Share Document