scholarly journals Electrophysiological correlates of state transition prediction errors

2019 ◽  
Author(s):  
Danesh Shahnazian ◽  
José J.F Ribas-Fernandes ◽  
Clay B. Holroyd

AbstractPlanning behavior depends crucially on the ability to distinguish between the likely and unlikely consequences of an action. Formal computational models of planning postulate the existence of a neural mechanism that tracks the transition model of the environment, i.e., a model that explicitly represents the probabilities of action consequences. However, empirical findings relating to such a mechanism are scarce. Here we report the results of two electroencephalographic experiments examining the neural correlates of transition model learning. The results implicate fronto-midline theta and delta oscillations in this process and suggest a role of the anterior midcingulate cortex in planning behavior.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Joao Castelhano ◽  
Isabel C. Duarte ◽  
Joao Duraes ◽  
Henrique Madeira ◽  
Miguel Castelo-Branco

Software programming is a modern activity that poses strong challenges to the human brain. The neural mechanisms that support this novel cognitive faculty are still unknown. On the other hand, reading and calculation abilities represent slightly less recent human activities, in which neural correlates are relatively well understood. We hypothesize that calculus and reading brain networks provide joint underpinnings with distinctly weighted contributions which concern programming tasks, in particular concerning error identification. Based on a meta-analysis of the core regions involved in both reading and math and recent experimental evidence on the neural basis of programming tasks, we provide a theoretical account that integrates the role of these networks in program understanding. In this connectivity-based framework, error-monitoring processing regions in the frontal cortex influence the insula, which is a pivotal hub within the salience network, leading into efficient causal modulation of parietal networks involved in reading and mathematical operations. The core role of the anterior insula and anterior midcingulate cortex is illuminated by their relation to performance in error processing and novelty. The larger similarity that we observed between the networks underlying calculus and programming skills does not exclude a more limited but clear overlap with the reading network, albeit with differences in hemispheric lateralization when compared with prose reading. Future work should further elucidate whether other features of computer program understanding also use distinct weights of phylogenetically “older systems” for this recent human activity, based on the adjusting influence of fronto-insular networks. By unraveling the neural correlates of program understanding and bug detection, this work provides a framework to understand error monitoring in this novel complex faculty.


2021 ◽  
Author(s):  
Daniel Martins ◽  
Patricia Lockwood ◽  
Jo Cutler ◽  
Rosalyn J. Moran ◽  
Yannis Paloyelis

Humans often act in the best interests of others. However, how we learn which actions result in good outcomes for other people and the neurochemical systems that support this "prosocial learning" remain poorly understood. Using computational models of reinforcement learning, functional magnetic resonance imaging and dynamic causal modelling, we examined how different doses of intranasal oxytocin, a neuropeptide linked to social cognition, impact how people learn to benefit others (prosocial learning) and whether this influence could be dissociated from how we learn to benefit ourselves (self-oriented learning). We show that a low dose of oxytocin prevented decreases in prosocial performance over time, despite no impact on self-oriented learning. Critically, oxytocin produced dose-dependent changes in the encoding of prediction errors (PE) in the midbrain-subgenual anterior cingulate cortex (sgACC) pathway specifically during prosocial learning. Our findings reveal a new role of oxytocin in prosocial learning by modulating computations of PEs in the midbrain-sgACC pathway.


PEDIATRICS ◽  
2020 ◽  
Vol 146 (Supplement 4) ◽  
pp. S359.2-S360
Author(s):  
Jennilee Eppley ◽  
Todd Mahr

2020 ◽  
Author(s):  
Kate Ergo ◽  
Luna De Vilder ◽  
Esther De Loof ◽  
Tom Verguts

Recent years have witnessed a steady increase in the number of studies investigating the role of reward prediction errors (RPEs) in declarative learning. Specifically, in several experimental paradigms RPEs drive declarative learning; with larger and more positive RPEs enhancing declarative learning. However, it is unknown whether this RPE must derive from the participant’s own response, or whether instead any RPE is sufficient to obtain the learning effect. To test this, we generated RPEs in the same experimental paradigm where we combined an agency and a non-agency condition. We observed no interaction between RPE and agency, suggesting that any RPE (irrespective of its source) can drive declarative learning. This result holds implications for declarative learning theory.


Author(s):  
Nikolai Petrov ◽  
Nikolai Petrov ◽  
Inna Nikonorova ◽  
Inna Nikonorova ◽  
Vladimir Mashin ◽  
...  

High-speed railway "Moscow-Kazan" by the draft crosses the Volga (Kuibyshev reservoir) in Chuvashia region 500 m below the village of New Kushnikovo. The crossing plot is a right-bank landslide slope with a stepped surface. Its height is 80 m; the slope steepness -15-16o. The authors should assess the risk of landslides and recommend anti-landslide measures to ensure the safety of the future bridge. For this landslide factors have been analyzed, slope stability assessment has been performed and recommendations have been suggested. The role of the following factors have been analyzed: 1) hydrologic - erosion and abrasion reservoir and runoff role; 2) lithologyc (the presence of Urzhum and Northern Dvina horizons of plastically deformable rocks, displacement areas); 3) hydrogeological (the role of perched, ground and interstratal water); 4) geomorphological (presence of the elemental composition of sliding systems and their structure in the relief); 5) exogeodynamic (cycles and stages of landslide systems development, mechanisms and relationship between landslide tiers of different generations and blocks contained in tiers). As a result 6-7 computational models at each of the three engineering-geological sections were made. The stability was evaluated by the method “of the leaning slope”. It is proved that the slope is in a very stable state and requires the following measures: 1) unloading (truncation) of active heads blocks of landslide tiers) and the edge of the plateau, 2) regulation of the surface and groundwater flow, 3) concrete dam, if necessary.


2016 ◽  
Vol 1 (7) ◽  
Author(s):  
Eric D. Tytell ◽  
Megan C. Leftwich ◽  
Chia-Yu Hsu ◽  
Boyce E. Griffith ◽  
Avis H. Cohen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document