scholarly journals The genomic landscape of metastatic castration-resistant prostate cancers using whole genome sequencing reveals multiple distinct genotypes with potential clinical impact

2019 ◽  
Author(s):  
Lisanne F. van Dessel ◽  
Job van Riet ◽  
Minke Smits ◽  
Yanyun Zhu ◽  
Paul Hamberg ◽  
...  

AbstractHere we present whole-genome sequencing (WGS) analysis of fresh-frozen metastatic biopsies from 197 castration-resistant prostate cancer patients. Using hierarchical unsupervised clustering based on genomic aberrations only, we defined eight different clusters. We detected four distinct and potentially clinically relevant genotypes harboring unique genomic features, including: 1) Microsatellite Instability; 2) Homologous Recombination Deficiency (HRD) with enriched genomic deletions and BRCA2 aberrations; 3) tandem duplication phenotype associated with biallelic CDK12 mutations; and 4) a subgroup enriched for chromothripsis events. Our data suggest that classifying patients using WGS characteristics may improve classification of HRD patients. Moreover, we confirmed that important regulators of AR-mediated signaling are located in non-coding regions. Using ChIP sequencing data, we showed that the amplified AR and MYC promoter regions contain open chromatin and bind AR, suggesting a role in AR mediated biology. Thus, high-resolution WGS may be used to improve patient stratification.

2017 ◽  
Author(s):  
Jeremiah A Wala ◽  
Ofer Shapira ◽  
Yilong Li ◽  
David Craft ◽  
Steven E Schumacher ◽  
...  

AbstractCancer cells can acquire profound alterations to the structure of their genomes, including rearrangements that fuse distant DNA breakpoints. We analyze the distribution of somatic rearrangements across the cancer genome, using whole-genome sequencing data from 2,693 tumor-normal pairs. We observe substantial variation in the density of rearrangement breakpoints, with enrichment in open chromatin and sites with high densities of repetitive elements. After accounting for these patterns, we identify significantly recurrent breakpoints (SRBs) at 52 loci, including novel SRBs near BRD4 and AKR1C3. Taking into account both loci fused by a rearrangement, we observe different signatures resembling either single breaks followed by strand invasion or two separate breaks that become joined. Accounting for these signatures, we identify 90 pairs of loci that are significantly recurrently juxtaposed (SRJs). SRJs are primarily tumor-type specific and tend to involve genes with tissue-specific expression. SRJs were frequently associated with disruption of topology-associated domains, juxtaposition of enhancer elements, and increased expression of neighboring genes. Lastly, we find that the power to detect SRJs decreases for short rearrangements, and that reliable detection of all driver SRJs will require whole-genome sequencing data from an order of magnitude more cancer samples than currently available.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sung Yong Park ◽  
Gina Faraci ◽  
Pamela M. Ward ◽  
Jane F. Emerson ◽  
Ha Youn Lee

AbstractCOVID-19 global cases have climbed to more than 33 million, with over a million total deaths, as of September, 2020. Real-time massive SARS-CoV-2 whole genome sequencing is key to tracking chains of transmission and estimating the origin of disease outbreaks. Yet no methods have simultaneously achieved high precision, simple workflow, and low cost. We developed a high-precision, cost-efficient SARS-CoV-2 whole genome sequencing platform for COVID-19 genomic surveillance, CorvGenSurv (Coronavirus Genomic Surveillance). CorvGenSurv directly amplified viral RNA from COVID-19 patients’ Nasopharyngeal/Oropharyngeal (NP/OP) swab specimens and sequenced the SARS-CoV-2 whole genome in three segments by long-read, high-throughput sequencing. Sequencing of the whole genome in three segments significantly reduced sequencing data waste, thereby preventing dropouts in genome coverage. We validated the precision of our pipeline by both control genomic RNA sequencing and Sanger sequencing. We produced near full-length whole genome sequences from individuals who were COVID-19 test positive during April to June 2020 in Los Angeles County, California, USA. These sequences were highly diverse in the G clade with nine novel amino acid mutations including NSP12-M755I and ORF8-V117F. With its readily adaptable design, CorvGenSurv grants wide access to genomic surveillance, permitting immediate public health response to sudden threats.


Heredity ◽  
2021 ◽  
Author(s):  
Axel Jensen ◽  
Mette Lillie ◽  
Kristofer Bergström ◽  
Per Larsson ◽  
Jacob Höglund

AbstractThe use of genetic markers in the context of conservation is largely being outcompeted by whole-genome data. Comparative studies between the two are sparse, and the knowledge about potential effects of this methodology shift is limited. Here, we used whole-genome sequencing data to assess the genetic status of peripheral populations of the wels catfish (Silurus glanis), and discuss the results in light of a recent microsatellite study of the same populations. The Swedish populations of the wels catfish have suffered from severe declines during the last centuries and persists in only a few isolated water systems. Fragmented populations generally are at greater risk of extinction, for example due to loss of genetic diversity, and may thus require conservation actions. We sequenced individuals from the three remaining native populations (Båven, Emån, and Möckeln) and one reintroduced population of admixed origin (Helge å), and found that genetic diversity was highest in Emån but low overall, with strong differentiation among the populations. No signature of recent inbreeding was found, but a considerable number of short runs of homozygosity were present in all populations, likely linked to historically small population sizes and bottleneck events. Genetic substructure within any of the native populations was at best weak. Individuals from the admixed population Helge å shared most genetic ancestry with the Båven population (72%). Our results are largely in agreement with the microsatellite study, and stresses the need to protect these isolated populations at the northern edge of the distribution of the species.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kelley Paskov ◽  
Jae-Yoon Jung ◽  
Brianna Chrisman ◽  
Nate T. Stockham ◽  
Peter Washington ◽  
...  

Abstract Background As next-generation sequencing technologies make their way into the clinic, knowledge of their error rates is essential if they are to be used to guide patient care. However, sequencing platforms and variant-calling pipelines are continuously evolving, making it difficult to accurately quantify error rates for the particular combination of assay and software parameters used on each sample. Family data provide a unique opportunity for estimating sequencing error rates since it allows us to observe a fraction of sequencing errors as Mendelian errors in the family, which we can then use to produce genome-wide error estimates for each sample. Results We introduce a method that uses Mendelian errors in sequencing data to make highly granular per-sample estimates of precision and recall for any set of variant calls, regardless of sequencing platform or calling methodology. We validate the accuracy of our estimates using monozygotic twins, and we use a set of monozygotic quadruplets to show that our predictions closely match the consensus method. We demonstrate our method’s versatility by estimating sequencing error rates for whole genome sequencing, whole exome sequencing, and microarray datasets, and we highlight its sensitivity by quantifying performance increases between different versions of the GATK variant-calling pipeline. We then use our method to demonstrate that: 1) Sequencing error rates between samples in the same dataset can vary by over an order of magnitude. 2) Variant calling performance decreases substantially in low-complexity regions of the genome. 3) Variant calling performance in whole exome sequencing data decreases with distance from the nearest target region. 4) Variant calls from lymphoblastoid cell lines can be as accurate as those from whole blood. 5) Whole-genome sequencing can attain microarray-level precision and recall at disease-associated SNV sites. Conclusion Genotype datasets from families are powerful resources that can be used to make fine-grained estimates of sequencing error for any sequencing platform and variant-calling methodology.


Sign in / Sign up

Export Citation Format

Share Document