scholarly journals Estimating sequencing error rates using families

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kelley Paskov ◽  
Jae-Yoon Jung ◽  
Brianna Chrisman ◽  
Nate T. Stockham ◽  
Peter Washington ◽  
...  

Abstract Background As next-generation sequencing technologies make their way into the clinic, knowledge of their error rates is essential if they are to be used to guide patient care. However, sequencing platforms and variant-calling pipelines are continuously evolving, making it difficult to accurately quantify error rates for the particular combination of assay and software parameters used on each sample. Family data provide a unique opportunity for estimating sequencing error rates since it allows us to observe a fraction of sequencing errors as Mendelian errors in the family, which we can then use to produce genome-wide error estimates for each sample. Results We introduce a method that uses Mendelian errors in sequencing data to make highly granular per-sample estimates of precision and recall for any set of variant calls, regardless of sequencing platform or calling methodology. We validate the accuracy of our estimates using monozygotic twins, and we use a set of monozygotic quadruplets to show that our predictions closely match the consensus method. We demonstrate our method’s versatility by estimating sequencing error rates for whole genome sequencing, whole exome sequencing, and microarray datasets, and we highlight its sensitivity by quantifying performance increases between different versions of the GATK variant-calling pipeline. We then use our method to demonstrate that: 1) Sequencing error rates between samples in the same dataset can vary by over an order of magnitude. 2) Variant calling performance decreases substantially in low-complexity regions of the genome. 3) Variant calling performance in whole exome sequencing data decreases with distance from the nearest target region. 4) Variant calls from lymphoblastoid cell lines can be as accurate as those from whole blood. 5) Whole-genome sequencing can attain microarray-level precision and recall at disease-associated SNV sites. Conclusion Genotype datasets from families are powerful resources that can be used to make fine-grained estimates of sequencing error for any sequencing platform and variant-calling methodology.

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S497-S498
Author(s):  
Mohamad Sater ◽  
Remy Schwab ◽  
Ian Herriott ◽  
Tim Farrell ◽  
Miriam Huntley

Abstract Background Healthcare associated infections (HAIs) are a major contributor to patient morbidity and mortality worldwide. HAIs are increasingly important due to the rise of multidrug resistant pathogens which can lead to deadly nosocomial outbreaks. Current methods for investigating transmissions are slow, costly, or have poor detection resolution. A rapid, cost-effective and high-resolution method to identify transmission events is imperative to guide infection control. Whole genome sequencing of infecting pathogens paired with a single nucleotide polymorphism (SNP) analysis can provide high-resolution clonality determination, yet these methods typically have long turnaround times. Here we examined the utility of the Oxford Nanopore Technologies (ONT) platform, a rapid sequencing technology, for whole genome sequencing based transmission analysis. Methods We developed a SNP calling pipeline customized for ONT data, which exhibit higher sequencing error rates and can therefore be challenging for transmission analysis. The pipeline leverages the latest basecalling tools as well as a suite of custom variant calling and filtering algorithms to achieve highest accuracy in clonality calls compared to Illumina-based sequencing. We also capitalize on ONT long reads by assembling outbreak-specific genomes in order to overcome the need for an external reference genome. Results We examined 20 bacterial isolates from 5 HAI investigations previously performed at Day Zero Diagnostics as part of epiXact®, our commercialized Illumina-based HAI sequencing and analysis service. Using the ONT data and pipeline, we achieved greater than 90% SNP-calling sensitivity and precision, allowing 100% accuracy of clonality classification compared to Illumina-based results across common HAI species. We demonstrate the validity and increased resolution of our SNP analysis pipeline using assembled genomes from each outbreak. We also demonstrate that this ONT-based workflow can produce isolate to transmission determination (i.e. including WGS and analysis) in less than 24 hours. SNP calling performance ONT-based SNP calling sensitivity and precision compared to Illumina-based pipeline Conclusion We demonstrate the utility of ONT for HAI investigation, establishing the potential to transform healthcare epidemiology with same-day high-resolution transmission determination. Disclosures Mohamad Sater, PhD, Day Zero Diagnostics (Employee, Shareholder) Remy Schwab, MSc, Day Zero Diagnostics (Employee, Shareholder) Ian Herriott, BS, Day Zero Diagnostics (Employee, Shareholder) Tim Farrell, MS, Day Zero Diagnostics, Inc. (Employee, Shareholder) Miriam Huntley, PhD, Day Zero Diagnostics (Employee, Shareholder)


2018 ◽  
Author(s):  
Anna Supernat ◽  
Oskar Valdimar Vidarsson ◽  
Vidar M. Steen ◽  
Tomasz Stokowy

ABSTRACTTesting of patients with genetics-related disorders is in progress of shifting from single gene assays to gene panel sequencing, whole-exome sequencing (WES) and whole-genome sequencing (WGS). Since WGS is unquestionably becoming a new foundation for molecular analyses, we decided to compare three currently used tools for variant calling of human whole genome sequencing data. We tested DeepVariant, a new TensorFlow machine learning-based variant caller, and compared this tool to GATK 4.0 and SpeedSeq, using 30×, 15× and 10× WGS data of the well-known NA12878 DNA reference sample.According to our comparison, the performance on SNV calling was almost similar in 30× data, with all three variant callers reaching F-Scores (i.e. harmonic mean of recall and precision) equal to 0.98. In contrast, DeepVariant was more precise in indel calling than GATK and SpeedSeq, as demonstrated by F-Scores of 0.94, 0.90 and 0.84, respectively.We conclude that the DeepVariant tool has great potential and usefulness for analysis of WGS data in medical genetics.


2018 ◽  
Vol 20 (11) ◽  
pp. 1328-1333 ◽  
Author(s):  
Ahmed Alfares ◽  
Taghrid Aloraini ◽  
Lamia Al subaie ◽  
Abdulelah Alissa ◽  
Ahmed Al Qudsi ◽  
...  

2019 ◽  
Author(s):  
Yue Xing ◽  
Alan R. Dabney ◽  
Xiao Li ◽  
Guosong Wang ◽  
Clare A. Gill ◽  
...  

AbstractCopy number variants are insertions and deletions of 1 kb or larger in a genome that play an important role in phenotypic changes and human disease. Many software applications have been developed to detect copy number variants using either whole-genome sequencing or whole-exome sequencing data. However, there is poor agreement in the results from these applications. Simulated datasets containing copy number variants allow comprehensive comparisons of the operating characteristics of existing and novel copy number variant detection methods. Several software applications have been developed to simulate copy number variants and other structural variants in whole-genome sequencing data. However, none of the applications reliably simulate copy number variants in whole-exome sequencing data. We have developed and tested SECNVs (Simulator of Exome Copy Number Variants), a fast, robust and customizable software application for simulating copy number variants and whole-exome sequences from a reference genome. SECNVs is easy to install, implements a wide range of commands to customize simulations, can output multiple samples at once, and incorporates a pipeline to output rearranged genomes, short reads and BAM files in a single command. Variants generated by SECNVs are detected with high sensitivity and precision by tools commonly used to detect copy number variants. SECNVs is publicly available at https://github.com/YJulyXing/SECNVs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anwen Ren ◽  
Wei Yin ◽  
Heather Miller ◽  
Lisa S. Westerberg ◽  
Fabio Candotti ◽  
...  

With the expansion of our knowledge on inborn errors of immunity (IEI), it gradually becomes clear that immune dysregulation plays an important part. In some cases, autoimmunity, hyperinflammation and lymphoproliferation are far more serious than infections. Thus, immune dysregulation has become significant in disease monitoring and treatment. In recent years, the wide application of whole-exome sequencing/whole-genome sequencing has tremendously promoted the discovery and further studies of new IEI. The number of discovered IEI is growing rapidly, followed by numerous studies of their pathogenesis and therapy. In this review, we focus on novel discovered primary immune dysregulation diseases, including deficiency of SLC7A7, CD122, DEF6, FERMT1, TGFB1, RIPK1, CD137, TET2 and SOCS1. We discuss their genetic mutation, symptoms and current therapeutic methods, and point out the gaps in this field.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Andreas Ruscheinski ◽  
Anna Lena Reimler ◽  
Roland Ewald ◽  
Adelinde M. Uhrmacher

Abstract Background Clinical diagnostics of whole-exome and whole-genome sequencing data requires geneticists to consider thousands of genetic variants for each patient. Various variant prioritization methods have been developed over the last years to aid clinicians in identifying variants that are likely disease-causing. Each time a new method is developed, its effectiveness must be evaluated and compared to other approaches based on the most recently available evaluation data. Doing so in an unbiased, systematic, and replicable manner requires significant effort. Results The open-source test bench “VPMBench” automates the evaluation of variant prioritization methods. VPMBench introduces a standardized interface for prioritization methods and provides a plugin system that makes it easy to evaluate new methods. It supports different input data formats and custom output data preparation. VPMBench exploits declaratively specified information about the methods, e.g., the variants supported by the methods. Plugins may also be provided in a technology-agnostic manner via containerization. Conclusions VPMBench significantly simplifies the evaluation of both custom and published variant prioritization methods. As we expect variant prioritization methods to become ever more critical with the advent of whole-genome sequencing in clinical diagnostics, such tool support is crucial to facilitate methodological research.


Sign in / Sign up

Export Citation Format

Share Document