scholarly journals Classification of visual cortex plasticity phenotypes following treatment for amblyopia

2019 ◽  
Author(s):  
Justin L. Balsor ◽  
David G. Jones ◽  
Kathryn M. Murphy

AbstractMonocular deprivation (MD) during the critical period (CP) has enduring effects on visual acuity and the functioning of the visual cortex (V1). This experience-dependent plasticity has become a model for studying the mechanisms, especially glutamatergic and GABAergic receptors, that regulate amblyopia. Less is known, however, about treatment-induced changes to those receptors and if those changes differentiate treatments that support the recovery of acuity versus persistent acuity deficits. Here we use an animal model to explore the effects of 3 visual treatments started during the CP (n=24, 10 male and 14 female); binocular vision (BV) that promotes good acuity versus reverse occlusion (RO) and binocular deprivation (BD) that causes persistent acuity deficits. We measured recovery of a collection of glutamatergic and GABAergic receptor subunits in V1 and modeled recovery of kinetics for NMDAR and GABAAR. There was a complex pattern of protein changes that prompted us to develop an unbiased data-driven approach for these high-dimensional data analyses to identify plasticity features and construct plasticity phenotypes. Cluster analysis of the plasticity phenotypes suggests that BV supports adaptive plasticity while RO and BD promote a maladaptive pattern. The RO plasticity phenotype appeared more similar to adults with high expression of GluA2 and the BD phenotypes were dominated by GABAAα1, highlighting that multiple plasticity phenotypes can underlie persistent poor acuity. After 2-4 days of BV the plasticity phenotypes resembled normals, but only one feature, the GluN2A:GluA2 balance, returned to normal levels. Perhaps, balancing Hebbian (GluN2A) and homeostatic (GluA2) mechanisms is necessary for the recovery of vision.

2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
Justin L. Balsor ◽  
David G. Jones ◽  
Kathryn M. Murphy

Monocular deprivation (MD) during the critical period (CP) has enduring effects on visual acuity and the functioning of the visual cortex (V1). This experience-dependent plasticity has become a model for studying the mechanisms, especially glutamatergic and GABAergic receptors, that regulate amblyopia. Less is known, however, about treatment-induced changes to those receptors and if those changes differentiate treatments that support the recovery of acuity versus persistent acuity deficits. Here, we use an animal model to explore the effects of 3 visual treatments started during the CP (n=24, 10 male and 14 female): binocular vision (BV) that promotes good acuity versus reverse occlusion (RO) and binocular deprivation (BD) that causes persistent acuity deficits. We measured the recovery of a collection of glutamatergic and GABAergic receptor subunits in the V1 and modeled recovery of kinetics for NMDAR and GABAAR. There was a complex pattern of protein changes that prompted us to develop an unbiased data-driven approach for these high-dimensional data analyses to identify plasticity features and construct plasticity phenotypes. Cluster analysis of the plasticity phenotypes suggests that BV supports adaptive plasticity while RO and BD promote a maladaptive pattern. The RO plasticity phenotype appeared more similar to adults with a high expression of GluA2, and the BD phenotypes were dominated by GABAAα1, highlighting that multiple plasticity phenotypes can underlie persistent poor acuity. After 2-4 days of BV, the plasticity phenotypes resembled normals, but only one feature, the GluN2A:GluA2 balance, returned to normal levels. Perhaps, balancing Hebbian (GluN2A) and homeostatic (GluA2) mechanisms is necessary for the recovery of vision.


2019 ◽  
Author(s):  
Justin L. Balsor ◽  
David G. Jones ◽  
Kathryn M. Murphy

AbstractA collection of glutamatergic and GABAergic proteins participate in regulating experience-dependent plasticity in the visual cortex (V1). Many studies have characterized changes to those proteins caused by monocular deprivation (MD) during the critical period (CP), but less is known about changes that occur when MD stops. We measured the effects of 3 types of visual experience after MD (n=24, 10 male and 14 female); reverse occlusion (RO), binocular deprivation (BD), or binocular vision, on the expression of synaptic proteins in V1 including glutamatergic and GABAergic receptor subunits. Synapsin expression was increased by RO but not affected by the other treatments. BD shifted the balance between glutamatergic and GABAergic receptor subunits to favor GABAAα1. In contrast, BV shifted expression to favor the glutamatergic mechanisms by increasing NMDAR and decreasing GABAAα1 subunits. None of the conditions returned normal expression levels to all of the proteins, but BV was the closest.


1992 ◽  
Vol 67 (1) ◽  
pp. 197-202 ◽  
Author(s):  
N. W. Daw ◽  
K. Fox ◽  
H. Sato ◽  
D. Czepita

1. Cats were monocularly deprived for 3 mo starting at 8-9 mo, 12 mo, 15 mo, and several years of age. Single cells were recorded in both visual cortexes of each cat, and the ocular dominance and layer determined for each cell. Ocular dominance histograms were then constructed for layers II/III, IV, and V/VI for each group of animals. 2. There was a statistically significant shift in the ocular dominance for cells in layers II/III and V/VI for the animals deprived between 8-9 and 11-12 mo of age. There was a small but not statistically significant shift for cells in layer IV from the animals deprived between 8-9 and 11-12 mo of age, and for cells in layers V/VI from the animals deprived between 15 and 18 mo of age. There was no noticeable shift in ocular dominance for any other layers in any other group of animals. 3. We conclude that the critical period for monocular deprivation is finally over at approximately 1 yr of age for extragranular layers (layers II, III, V, and VI) in visual cortex of the cat.


2018 ◽  
Vol 35 ◽  
Author(s):  
TAKAO K. HENSCH ◽  
ELIZABETH M. QUINLAN

AbstractThe shift in ocular dominance (OD) of binocular neurons induced by monocular deprivation is the canonical model of synaptic plasticity confined to a postnatal critical period. Developmental constraints on this plasticity not only lend stability to the mature visual cortical circuitry but also impede the ability to recover from amblyopia beyond an early window. Advances with mouse models utilizing the power of molecular, genetic, and imaging tools are beginning to unravel the circuit, cellular, and molecular mechanisms controlling the onset and closure of the critical periods of plasticity in the primary visual cortex (V1). Emerging evidence suggests that mechanisms enabling plasticity in juveniles are not simply lost with age but rather that plasticity is actively constrained by the developmental up-regulation of molecular ‘brakes’. Lifting these brakes enhances plasticity in the adult visual cortex, and can be harnessed to promote recovery from amblyopia. The reactivation of plasticity by experimental manipulations has revised the idea that robust OD plasticity is limited to early postnatal development. Here, we discuss recent insights into the neurobiology of the initiation and termination of critical periods and how our increasingly mechanistic understanding of these processes can be leveraged toward improved clinical treatment of adult amblyopia.


2004 ◽  
Vol 21 (4) ◽  
pp. 653-670 ◽  
Author(s):  
KATHRYN M. MURPHY ◽  
KEVIN R. DUFFY ◽  
DAVID G. JONES

When normal binocular visual experience is disrupted during postnatal development, it affects the maturation of cortical circuits and often results in the development of poor visual acuity known as amblyopia. Two main factors contribute to the development of amblyopia: visual deprivation and reduced binocular competition. We investigated the affect of these two amblyogenic factors on the expression of the NMDAR1 subunit in the visual cortex because activation of the NMDA receptor is a key mechanism of developmental neural plasticity. We found that disruption of binocular correlations by monocular deprivation promoted a topographic loss of NMDAR1 expression within the cortical representations of the central visual field and the vertical and horizontal meridians. In contrast, binocular deprivation, which primarily affects visual deprivation, promoted an increase in NMDAR1 expression throughout the visual cortex. These different changes in NMDAR1 expression can be described as topographic and homeostatic plasticity of NMDA expression, respectively. In addition, the changes in NMDA expression in the visual cortex provide a greater understanding of the neural mechanisms that underlie the development of amblyopia and the potential for visual recovery.


2002 ◽  
Vol 88 (4) ◽  
pp. 1933-1940 ◽  
Author(s):  
Chris J. Beaver ◽  
Quentin S. Fischer ◽  
Qinghua Ji ◽  
Nigel W. Daw

We have previously shown that the protein kinase A (PKA) inhibitor, 8-chloroadenosine-3′,5′–monophosphorothioate (Rp-8-Cl-cAMPS), abolishes ocular dominance plasticity in the cat visual cortex. Here we investigate the effect of this inhibitor on orientation selectivity. The inhibitor reduces orientation selectivity in monocularly deprived animals but not in normal animals. In other words, PKA inhibitors by themselves do not affect orientation selectivity, nor does monocular deprivation by itself, but monocular deprivation in combination with a PKA inhibitor does affect orientation selectivity. This result is found for the receptive fields in both deprived and nondeprived eyes. Although there is a tendency for the orientation selectivity in the nondeprived eye to be higher than the orientation selectivity in the deprived eye, the orientation selectivity in both eyes is considerably less than normal. The result is striking in animals at 4 wk of age. The effect of the monocular deprivation on orientation selectivity is reduced at 6 wk of age and absent at 9 wk of age, while the effect on ocular dominance shifts is less changed in agreement with previous results showing that the critical period for orientation/direction selectivity ends earlier than the critical period for ocular dominance. We conclude that closure of one eye in combination with inhibition of PKA reduces orientation selectivity during the period that orientation selectivity is still mutable and that the reduction in orientation selectivity is transferred to the nondeprived eye.


2014 ◽  
Vol 7 (1) ◽  
pp. 29-54 ◽  
Author(s):  
Natalia Beliaeva

This article presents an approach to the resolution of the much discussed problem of morphological classification of blend words and their distinction from such neighbouring morphological categories as clipping compounds. The research focuses on novel coinages and takes a data-driven approach to study the interaction between the form and the meaning of blends/clipping compounds. A multifactorial analysis of formal and semantic properties of these words is undertaken, as a result of which phonological and structural differences between blends and clipping compounds are explained using formal and semantic factors.


Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 887 ◽  
Author(s):  
Petros Gkotsis ◽  
Emanuele Pugliese ◽  
Antonio Vezzani

In this work we use clustering techniques to identify groups of firms competing in similar technological markets. Our clustering properly highlights technological similarities grouping together firms normally classified in different industrial sectors. Technological development leads to a continuous changing structure of industries and firms. For this reason, we propose a data driven approach to classify firms together allowing for fast adaptation of the classification to the changing technological landscape. In this respect we differentiate from previous taxonomic exercises of industries and innovation which are based on more general common features. In our empirical application, we use patent data as a proxy for the firms’ capabilities of developing new solutions in different technological fields. On this basis, we extract what we define a Technologically Driven Classification (TDC). In order to validate the result of our exercise we use information theory to look at the amount of information explained by our clustering and the amount of information shared with an industrial classification. All-in-all, our approach provides a good grouping of firms on the basis of their technological capabilities and represents an attractive option to compare firms in the technological space and better characterise competition in technological markets.


Sign in / Sign up

Export Citation Format

Share Document