scholarly journals Contribution of Apical and Basal Dendrites of L2/3 Pyramidal Neurons to Orientation Encoding in Mouse V1

2019 ◽  
Author(s):  
Jiyoung Park ◽  
Athanasia Papoutsi ◽  
Ryan T. Ash ◽  
Miguel A. Marin ◽  
Panayiota Poirazi ◽  
...  

AbstractPyramidal neurons integrate synaptic inputs from basal and apical dendrites to generate stimulus-specific responses. It has been proposed that feed-forward inputs to basal dendrites drive a neuron’s stimulus preference, while feedback inputs to apical dendrites sharpen selectivity. However, how a neuron’s dendritic domains relate to its functional selectivity has not been demonstrated experimentally. We performed 2-photon dendritic micro-dissection on layer-2/3 pyramidal neurons in mouse primary visual cortex. We found that removing the apical dendritic tuft did not alter orientation-tuning. Furthermore, orientation-tuning curves were remarkably robust to the removal of basal dendrites: ablation of 2-3 basal dendrites was needed to cause a small shift in orientation preference, without significantly altering tuning width. Computational modeling corroborated our results and put limits on how orientation preferences among basal dendrites differ in order to reproduce the post-ablation data. In conclusion, neuronal orientation-tuning appears remarkably robust to loss of dendritic input.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiyoung Park ◽  
Athanasia Papoutsi ◽  
Ryan T. Ash ◽  
Miguel A. Marin ◽  
Panayiota Poirazi ◽  
...  

AbstractPyramidal neurons integrate synaptic inputs from basal and apical dendrites to generate stimulus-specific responses. It has been proposed that feed-forward inputs to basal dendrites drive a neuron’s stimulus preference, while feedback inputs to apical dendrites sharpen selectivity. However, how a neuron’s dendritic domains relate to its functional selectivity has not been demonstrated experimentally. We performed 2-photon dendritic micro-dissection on layer-2/3 pyramidal neurons in mouse primary visual cortex. We found that removing the apical dendritic tuft did not alter orientation-tuning. Furthermore, orientation-tuning curves were remarkably robust to the removal of basal dendrites: ablation of 2 basal dendrites was needed to cause a small shift in orientation preference, without significantly altering tuning width. Computational modeling corroborated our results and put limits on how orientation preferences among basal dendrites differ in order to reproduce the post-ablation data. In conclusion, neuronal orientation-tuning appears remarkably robust to loss of dendritic input.



2011 ◽  
Vol 105 (1) ◽  
pp. 347-355 ◽  
Author(s):  
Giao B. Hang ◽  
Yang Dan

Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices. We found that the integration is sublinear and temporally asymmetric, with larger responses if layer 2/3 input preceded layer 4 input. The sublinearity depended on inhibition, and the asymmetry was largely attributable to the difference between the two inhibitory inputs. Interestingly, the asymmetric integration was specific to pyramidal neurons, and it strongly affected their spiking output. Thus via cortical inhibition, the temporal order of activation of layer 2/3 and layer 4 pathways can exert powerful control of cortical output during visual processing.





Author(s):  
Mari A. Virtanen ◽  
Claudia Marvine Lacoh ◽  
Hubert Fiumelli ◽  
Markus Kosel ◽  
Shiva Tyagarajan ◽  
...  


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Alicja Kreczko ◽  
Anubhuthi Goel ◽  
Lihua Song ◽  
Hey-Kyoung Lee

Proper functioning of the visual system depends on maturation of both excitatory and inhibitory synapses within the visual cortex. Considering that perisomatic inhibition is one of the key factors that control the critical period in visual cortex, it is pertinent to understand its regulation by visual experience. To do this, we developed an immunohistochemical method that allows three-dimensional (3D) analysis of the glutamic acid decarboxylase (GAD) 65-positive inhibitory terminals in the visual cortex. Using this method on transgenic mice expressing yellow fluorescence protein (YFP) in a subset of neurons, we found that the number of somatic GAD65-puncta on individual layer 2/3 pyramidal neurons is reduced when mice are dark-reared from birth and reverted to normal levels by re-exposure to light. There was no change in GAD65-puncta volume or intensity. These results support the reorganization of inhibitory circuitry within layer 2/3 of visual cortex in response to changes in visual experience.



Author(s):  
Simon Weiler ◽  
Drago Guggiana Nilo ◽  
Tobias Bonhoeffer ◽  
Mark Hübener ◽  
Tobias Rose ◽  
...  

AbstractNeocortical pyramidal cells (PCs) display functional specializations defined by their excitatory and inhibitory circuit connectivity. For layer 2/3 (L2/3) PCs, little is known about the detailed relationship between their neuronal response properties, dendritic structure and their underlying circuit connectivity at the level of single cells. Here, we ask whether L2/3 PCs in mouse primary visual cortex (V1) differ in their functional intra- and interlaminar connectivity patterns, and how this relates to differences in visual response properties. Using a combined approach, we first characterized the orientation and direction tuning of individual L2/3 PCs with in vivo 2-photon calcium imaging. Subsequently, we performed excitatory and inhibitory synaptic input mapping of the same L2/3 PCs in brain slices using laser scanning photostimulation (LSPS).Our data from this structure-connectivity-function analysis show that the sources of excitatory and inhibitory synaptic input are different in their laminar origin and horizontal location with respect to cell position: On average, L2/3 PCs receive more inhibition than excitation from within L2/3, whereas excitation dominates input from L4 and L5. Horizontally, inhibitory input originates from locations closer to the horizontal position of the soma, while excitatory input arises from more distant locations in L4 and L5. In L2/3, the excitatory and inhibitory inputs spatially overlap on average. Importantly, at the level of individual neurons, PCs receive inputs from presynaptic cells located spatially offset, vertically and horizontally, relative to the soma. These input offsets show a systematic correlation with the preferred orientation of the postsynaptic L2/3 PC in vivo. Unexpectedly, this correlation is higher for inhibitory input offsets within L2/3 than for excitatory input offsets. When relating the dendritic complexity of L2/3 PCs to their orientation tuning, we find that sharply tuned cells have a less complex apical tree compared to broadly tuned cells. These results indicate that the spatial input offsets of the functional input connectivity are linked to orientation preference, while the orientation selectivity of L2/3 PCs is more related to the dendritic complexity.



2019 ◽  
Vol 1712 ◽  
pp. 124-131 ◽  
Author(s):  
Kayoung Joo ◽  
Kwang-Hyun Cho ◽  
Sung-Hee Youn ◽  
Hyun-Jong Jang ◽  
Duck-Joo Rhie


1995 ◽  
Vol 12 (1) ◽  
pp. 141-151 ◽  
Author(s):  
Yuri Danilov ◽  
Rodney J. Moore ◽  
Von R. King ◽  
Peter D. Spear

AbstractThere is controversy in the literature concerning whether or not neurons in the cat's posteromedial lateral suprasylvian (PMLS) visual cortex are orientation selective. Previous studies that have tested cells with simple bar stimuli have found that few, if any, PMLS cells are orientation selective. Conversely, studies that have used repetitive stimuli such as gratings have found that most or all PMLS cells are orientation selective. It is not known whether this difference in results is due to the stimuli used or the laboratories using them. The present experiments were designed to answer this question by testing individual PMLS neurons for orientation sensitivity with both bar and grating stimuli. Using quantitative response measures, we found that most PMLS neurons respond well enough to stationary flashed stimuli to use such stimuli to test for orientation sensitivity. On the basis of these tests, we found that about 85% of the cells with well-defined receptive fields are orientation sensitive to flashed gratings, and a similar percentage are orientation sensitive to flashed bars. About 80% of the cells were orientation sensitive to both types of stimuli. The preferred orientations typically were similar for the two tests, and they were orthogonal to the preferred direction of movement. The strength of the orientation sensitivity (measured as the ratio of discharge to the preferred and nonpreferred orientations) was similar to both types of stimuli. However, the width of the orientation tuning curves was systematically broader to bars than to gratings. Several hypotheses are considered as to why previous studies using bars failed to find evidence for orientation sensitivity. In addition, a mechanism for the difference in orientation tuning to bars and gratings is suggested.



1998 ◽  
Vol 15 (1) ◽  
pp. 177-196 ◽  
Author(s):  
J. MCLEAN ◽  
L.A. PALMER

We have utilized an associative conditioning paradigm to induce changes in the receptive field (RF) properties of neurons in the adult cat striate cortex. During conditioning, the presentation of particular visual stimuli were repeatedly paired with the iontophoretic application of either GABA or glutamate to control postsynaptic firing rates. Similar paradigms have been used in kitten visual cortex to alter RF properties (Fregnac et al., 1988, 1992; Greuel et al., 1988; Shulz & Fregnac, 1992). Roughly half of the cells that were subjected to conditioning with stimuli differing in orientation were found to have orientation tuning curves that were significantly altered. In general, the modification in orientation tuning was not accompanied by a shift in preferred orientation, but rather, responsiveness to stimuli at or near the positively reinforced orientation was increased relative to controls, and responsiveness to stimuli at or near the negatively reinforced orientation was decreased relative to controls. A similar proportion of cells that were subjected to conditioning with stimuli differing in spatial phase were found to have spatial-phase tuning curves that were significantly modified. Conditioning stimuli typically differed by 90 deg in spatial phase, but modifications in spatial-phase angle were generally 30–40 deg. An interesting phenomenon we encountered was that during conditioning, cells often developed a modulated response to counterphased grating stimuli presented at the null spatial phase. We present an example of a simple cell for which the shift in preferred spatial phase measured with counterphased grating stimuli was comparable to the shift in spatial phase computed from a one-dimensional Gabor fit of the space-time RF profile. One of ten cells tested had a significant change in direction selectivity following associative conditioning. The specific and predictable modifications of RF properties induced by our associative conditioning procedure demonstrate the ability of mature visual cortical neurons to alter their integrative properties. Our results lend further support to models of synaptic plasticity where temporal correlations between presynaptic and postsynaptic activity levels control the efficiency of transmission at existing synapses, and to the idea that the mature visual cortex is, in some sense, dynamically organized.



eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Daniel J Millman ◽  
Gabriel Koch Ocker ◽  
Shiella Caldejon ◽  
India Kato ◽  
Josh D Larkin ◽  
...  

Vasoactive intestinal peptide-expressing (VIP) interneurons in the cortex regulate feedback inhibition of pyramidal neurons through suppression of somatostatin-expressing (SST) interneurons and, reciprocally, SST neurons inhibit VIP neurons. Although VIP neuron activity in the primary visual cortex (V1) of mouse is highly correlated with locomotion, the relevance of locomotion-related VIP neuron activity to visual coding is not known. Here we show that VIP neurons in mouse V1 respond strongly to low contrast front-to-back motion that is congruent with self-motion during locomotion but are suppressed by other directions and contrasts. VIP and SST neurons have complementary contrast tuning. Layer 2/3 contains a substantially larger population of low contrast preferring pyramidal neurons than deeper layers, and layer 2/3 (but not deeper layer) pyramidal neurons show bias for front-to-back motion specifically at low contrast. Network modeling indicates that VIP-SST mutual antagonism regulates the gain of the cortex to achieve sensitivity to specific weak stimuli without compromising network stability.



Sign in / Sign up

Export Citation Format

Share Document