scholarly journals Is it reasonable to use of a kinship matrix for best linear unbiased prediction?

2019 ◽  
Author(s):  
Bongsong Kim

AbstractThe linear mixed model (LMM) is characterized to account for the variance-covariance among entities in a population toward calculating the best linear unbiased prediction (BLUP). Animal and plant breeders widely use the LMM because it is perceived that the a BLUP estimate informs an estimated breeding value (EBV), so to speak a combining ability as a parent, obtained by relating each entity to his/her relatives using the variance-covariance. The LMM practice routinely substitutes an external kinship matrix for the variance-covariance. The challenge relevant to the LMM practice is the fact that it is unrealistic to validate the EBVs because the real breeding values are not measurable but conceptual. This unreality actually means that the EBVs are vague. Although some previous studies measured correlations between the EBVs and empirical combining abilities, they are not sufficient to remove the vagueness of EBVs because uncontrollable environmental factors might interfere with phenotypic observations for measuring the combining abilities. To overcome the challenge, this study scrutinized the soundness of the routine LMM practice from the mathematical perspective. As a result, it was demonstrated that the BLUP estimates resulting from the routine LMM practice mislead the breeding values. The genuine BLUP represents the arithmetic means of multiple phenotypic observations per each entity, given all phenotypic observations adjusted to the mean of zero.

Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 361-373
Author(s):  
Piter Bijma ◽  
John A Woolliams

Abstract Predictions for the rate of inbreeding (ΔF) in populations with discrete generations undergoing selection on best linear unbiased prediction (BLUP) of breeding value were developed. Predictions were based on the concept of long-term genetic contributions using a recently established relationship between expected contributions and rates of inbreeding and a known procedure for predicting expected contributions. Expected contributions of individuals were predicted using a linear model, μi(x) = α βsi, where si denotes the selective advantage as a deviation from the contemporaries, which was the sum of the breeding values of the individual and the breeding values of its mates. The accuracy of predictions was evaluated for a wide range of population and genetic parameters. Accurate predictions were obtained for populations of 5–20 sires. For 20–80 sires, systematic underprediction of on average 11% was found, which was shown to be related to the goodness of fit of the linear model. Using simulation, it was shown that a quadratic model would give accurate predictions for those schemes. Furthermore, it was shown that, contrary to random selection, ΔF less than halved when the number of parents was doubled and that in specific cases ΔF may increase with the number of dams.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 569
Author(s):  
Chen Wei ◽  
Hanpeng Luo ◽  
Bingru Zhao ◽  
Kechuan Tian ◽  
Xixia Huang ◽  
...  

Genomic evaluations are a method for improving the accuracy of breeding value estimation. This study aimed to compare estimates of genetic parameters and the accuracy of breeding values for wool traits in Merino sheep between pedigree-based best linear unbiased prediction (PBLUP) and single-step genomic best linear unbiased prediction (ssGBLUP) using Bayesian inference. Data were collected from 28,391 yearlings of Chinese Merino sheep (classified in 1992–2018) at the Xinjiang Gonaisi Fine Wool Sheep-Breeding Farm, China. Subjectively-assessed wool traits, namely, spinning count (SC), crimp definition (CRIM), oil (OIL), and body size (BS), and objectively-measured traits, namely, fleece length (FL), greasy fleece weight (GFW), mean fiber diameter (MFD), crimp number (CN), and body weight pre-shearing (BWPS), were analyzed. The estimates of heritability for wool traits were low to moderate. The largest h2 values were observed for FL (0.277) and MFD (0.290) with ssGBLUP. The heritabilities estimated for wool traits with ssGBLUP were slightly higher than those obtained with PBLUP. The accuracies of breeding values were low to moderate, ranging from 0.362 to 0.573 for the whole population and from 0.318 to 0.676 for the genotyped subpopulation. The correlation between the estimated breeding values (EBVs) and genomic EBVs (GEBVs) ranged from 0.717 to 0.862 for the whole population, and the relative increase in accuracy when comparing EBVs with GEBVs ranged from 0.372% to 7.486% for these traits. However, in the genotyped population, the rank correlation between the estimates obtained with PBLUP and ssGBLUP was reduced to 0.525 to 0.769, with increases in average accuracy of 3.016% to 11.736% for the GEBVs in relation to the EBVs. Thus, genomic information could allow us to more accurately estimate the relationships between animals and improve estimates of heritability and the accuracy of breeding values by ssGBLUP.


2014 ◽  
Vol 685 ◽  
pp. 618-622
Author(s):  
Yan Yu Liu ◽  
Ming Zhong Jin ◽  
De You Xie ◽  
Min Qing Gong

For small area estimation (SAE) Spatial Empirical Best Linear Unbiased Prediction, SEBLUP, is involved in linear mixed model with spatial correlation while Empirical Best Linear Unbiased Prediction, EBLUP, often with mutual independence. In this paper, we discussed maximum likelihood estimation (MLE) and compared the efficiency. Simulation shows that SEBLUP with spatial correlation data of spatial small area is more effective than EBLUP.


2003 ◽  
Vol 33 (10) ◽  
pp. 2036-2043 ◽  
Author(s):  
Bin Xiang ◽  
Bailian Li

Full-sib progeny tests with clonal replicates may provide better breeding value estimates and the greatest genetic gain in a tree improvement program. Clonal breeding values (CBV) that combine the family and within-family breeding values due to additive genetic effects can maximize the genetic gain for advanced generation breeding. Clonal genetic values (CGV) that further incorporate full-sib family specific combining ability due to nonadditive genetic effect can maximize gain for a deployment program with clonal propagation techniques. The best linear unbiased prediction (BLUP) is the best statistical method for estimating both CBV and CGV because of its desirable statistical properties compared with the heritability-based gain calculation. A BLUP method for determining both the CBV and CGV for full-sib clonal progeny tests was proposed in this paper. The formulas for CBV and CGV were derived using general BLUP methodology, and formulas were derived for the calculations of their standard errors. An analytical method by using a standard statistical package (SAS PROC MIXED) was presented for CBV and CGV calculations from any full-sib mating designs.


Author(s):  
B Grundy ◽  
WG Hill

An optimum way of selecting animals is through a prediction of their genetic merit (estimated breeding value, EBV), which can be achieved using a best linear unbiased predictor (BLUP) (Henderson, 1975). Selection decisions in a commercial environment, however, are rarely made solely on genetic merit but also on additional factors, an important example of which is to limit the accumulation of inbreeding. Comparison of rates of inbreeding under BLUP for a range of hentabilities highlights a trend of increasing inbreeding with decreasing heritability. It is therefore proposed that selection using a heritability which is artificially raised would yield lower rates of inbreeding than would otherwise be the case.


Sign in / Sign up

Export Citation Format

Share Document