scholarly journals A polygenic risk score for breast cancer in U.S. Latinas and Latin-American women

2019 ◽  
Author(s):  
Yiwey Shieh ◽  
Laura Fejerman ◽  
Paul C. Lott ◽  
Katie Marker ◽  
Sarah D. Sawyer ◽  
...  

AbstractBackgroundOver 180 single nucleotide polymorphisms (SNPs) associated with breast cancer susceptibility have been identified; these SNPs can be combined into polygenic risk scores (PRS) to predict breast cancer risk. Since most SNPs were identified in predominantly European populations, little is known about the performance of PRS in non-Europeans. We tested the performance of a 180-SNP PRS in Latinas, a large ethnic group with variable levels of Indigenous American, European, and African ancestry.MethodsWe conducted a pooled case-control analysis of U.S. Latinas and Latin-American women (4,658 cases, 7,622 controls). We constructed a 180-SNP PRS consisting of SNPs associated with breast cancer risk (p < 5 × 10−8). We evaluated the association between the PRS and breast cancer risk using multivariable logistic regression and assessed discrimination using area under the receiver operating characteristic curve (AUROC). We also assessed PRS performance across quartiles of Indigenous American genetic ancestry.ResultsOf 180 SNPs tested, 142 showed directionally consistent associations compared with European populations, and 39 were nominally significant (p < 0.05). The PRS was associated with breast cancer risk, with an odds ratio (OR) per standard deviation increment of 1.58 (95% CI 1.52 to 1.64) and AUCROC of 0.63 (95% CI 0.62 to 0.64). The discrimination of the PRS was similar between the top and bottom quartiles of Indigenous American ancestry.ConclusionsThe 180-SNP PRS predicts breast cancer risk in Latinas, with similar performance as reported for Europeans. The performance of the PRS did not vary substantially according to Indigenous American ancestry.

2019 ◽  
Vol 112 (6) ◽  
pp. 590-598 ◽  
Author(s):  
Yiwey Shieh ◽  
Laura Fejerman ◽  
Paul C Lott ◽  
Katie Marker ◽  
Sarah D Sawyer ◽  
...  

Abstract Background More than 180 single nucleotide polymorphisms (SNPs) associated with breast cancer susceptibility have been identified; these SNPs can be combined into polygenic risk scores (PRS) to predict breast cancer risk. Because most SNPs were identified in predominantly European populations, little is known about the performance of PRS in non-Europeans. We tested the performance of a 180-SNP PRS in Latinas, a large ethnic group with variable levels of Indigenous American, European, and African ancestry. Methods We conducted a pooled case-control analysis of US Latinas and Latin American women (4658 cases and 7622 controls). We constructed a 180-SNP PRS consisting of SNPs associated with breast cancer risk (P &lt; 5 × 10–8). We evaluated the association between the PRS and breast cancer risk using multivariable logistic regression, and assessed discrimination using an area under the receiver operating characteristic curve. We also assessed PRS performance across quartiles of Indigenous American genetic ancestry. All statistical tests were two-sided. Results Of 180 SNPs tested, 142 showed directionally consistent associations compared with European populations, and 39 were nominally statistically significant (P &lt; .05). The PRS was associated with breast cancer risk, with an odds ratio per SD increment of 1.58 (95% confidence interval [CI = 1.52 to 1.64) and an area under the receiver operating characteristic curve of 0.63 (95% CI = 0.62 to 0.64). The discrimination of the PRS was similar between the top and bottom quartiles of Indigenous American ancestry. Conclusions The 180-SNP PRS predicts breast cancer risk in Latinas, with similar performance as reported for Europeans. The performance of the PRS did not vary substantially according to Indigenous American ancestry.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Feng Zhao ◽  
Zhixiang Hao ◽  
Yanan Zhong ◽  
Yinxue Xu ◽  
Meng Guo ◽  
...  

Abstract Background Multiple common variants identified by genome-wide association studies have shown limited evidence of the risk of breast cancer in Chinese individuals. In this study, we aimed to uncover the relationship between estrogen levels and the genetic polymorphism of estrogen metabolism-related enzymes in breast cancer (BC) and establish a risk prediction model composed of estrogen-metabolizing enzyme genes and GWAS-identified breast cancer-related genes based on a polygenic risk score. Methods Unrelated BC patients and healthy subjects were recruited for analysis of estrogen levels and single nucleotide polymorphisms (SNPs) in genes encoding estrogen metabolism-related enzymes. The polygenic risk score (PRS) was used to explore the combined effect of multiple genes, which was calculated using a Bayesian approach. An independent sample t-test was used to evaluate the differences between PRS scores of BC and healthy subjects. The discriminatory accuracy of the models was compared using the area under the receiver operating characteristic (ROC) curve. Results The estrogen homeostasis profile was disturbed in BC patients, with parent estrogens (E1, E2) and carcinogenic catechol estrogens (2/4-OHE1, 2-OHE2, 4-OHE2) significantly accumulating in the serum of BC patients. We then established a PRS model to evaluate the role of SNPs in multiple genes. PRS model 1 (M1) was established from SNPs in 6 GWAS-identified high risk genes. On the basis of M1, we added SNPs from 7 estrogen metabolism enzyme genes to establish PRS model 2 (M2). The independent sample t-test results showed that there was no difference between BC and healthy subjects in M1 (P = 0.17); however, there was a significant difference between BC and healthy subjects in M2 (P = 4.9*10− 5). The ROC curve results showed that the accuracy of M2 (AUC = 62.18%) in breast cancer risk identification was better than that of M1 (AUC = 54.56%). Conclusion Estrogen and related metabolic enzyme gene polymorphisms are closely related to BC. The model constructed by adding estrogen metabolic enzyme gene SNPs has a good predictive ability for breast cancer risk, and the accuracy is greatly improved compared with that of the PRS model that only includes GWAS-identified gene SNPs.


Blood ◽  
2019 ◽  
Vol 133 (10) ◽  
pp. 1130-1139 ◽  
Author(s):  
Annemieke W. J. Opstal-van Winden ◽  
Hugoline G. de Haan ◽  
Michael Hauptmann ◽  
Marjanka K. Schmidt ◽  
Annegien Broeks ◽  
...  

Abstract Female Hodgkin lymphoma (HL) patients treated with chest radiotherapy (RT) have a very high risk of breast cancer. The contribution of genetic factors to this risk is unclear. We therefore examined 211 155 germline single-nucleotide polymorphisms (SNPs) for gene-radiation interaction on breast cancer risk in a case-only analysis including 327 breast cancer patients after chest RT for HL and 4671 first primary breast cancer patients. Nine SNPs showed statistically significant interaction with RT on breast cancer risk (false discovery rate, &lt;20%), of which 1 SNP in the PVT1 oncogene attained the Bonferroni threshold for statistical significance. A polygenic risk score (PRS) composed of these SNPs (RT-interaction-PRS) and a previously published breast cancer PRS (BC-PRS) derived in the general population were evaluated in a case-control analysis comprising the 327 chest-irradiated HL patients with breast cancer and 491 chest-irradiated HL patients without breast cancer. Patients in the highest tertile of the RT-interaction-PRS had a 1.6-fold higher breast cancer risk than those in the lowest tertile. Remarkably, we observed a fourfold increased RT-induced breast cancer risk in the highest compared with the lowest decile of the BC-PRS. On a continuous scale, breast cancer risk increased 1.4-fold per standard deviation of the BC-PRS, similar to the effect size found in the general population. This study demonstrates that genetic factors influence breast cancer risk after chest RT for HL. Given the high absolute breast cancer risk in radiation-exposed women, these results can have important implications for the management of current HL survivors and future patients.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Clara Bodelon ◽  
Hannah Oh ◽  
Andriy Derkach ◽  
Joshua N. Sampson ◽  
Brian L. Sprague ◽  
...  

Abstract Terminal duct lobular units (TDLUs) are the predominant anatomical structures where breast cancers originate. Having lesser degrees of age-related TDLU involution, measured as higher TDLUs counts or more epithelial TDLU substructures (acini), is related to increased breast cancer risk among women with benign breast disease (BBD). We evaluated whether a recently developed polygenic risk score (PRS) based on 313-common variants for breast cancer prediction is related to TDLU involution in the background, normal breast tissue, as this could provide mechanistic clues on the genetic predisposition to breast cancer. Among 1398 women without breast cancer, higher values of the PRS were significantly associated with higher TDLU counts (P = 0.004), but not with acini counts (P = 0.808), in histologically normal tissue samples from donors and diagnostic BBD biopsies. Mediation analysis indicated that TDLU counts may explain a modest proportion (≤10%) of the association of the 313-variant PRS with breast cancer risk. These findings suggest that TDLU involution might be an intermediate step in the association between common genetic variation and breast cancer risk.


2020 ◽  
Author(s):  
Feng Zhao ◽  
Zhixiang Hao ◽  
Yanan Zhong ◽  
Yinxue Xu ◽  
Meng Guo ◽  
...  

Abstract Background In this study, we aim to uncover the relationship between estrogen levels and the genetic polymorphism of estrogen metabolism-related enzymes with breast cancer (BC) and establish a risk prediction model based on polygenic risk score. Methods Unrelated BC patients and healthy subjects were recruited for analysis of the estrogen levels and the single nucleotide polymorphisms (SNPs) of estrogen metabolism-related enzymes. The polygenic risk score (PRS) was used to explore the combined effect of multiple genes which was calculated using a Bayesian approach. The independent sample t test was used to evaluate the difference between PRS scores of BC and healthy subjects. Discriminatory accuracy of the models was compared using the area under the receiver operating characteristic curve (ROC). Results The estrogen homeostasis profile was disturbed in BC patients, with parent estrogens (E1, E2) and carcinogenic catechol estrogens (2/4-OHE1, 2-OHE2, 4-OHE2) significantly accumulated in the serum of BC patients. Then,we established PRS model to evaluate the role of multiple genes SNPs. The PRS model 1 (M1) was established from 6 GWAS-identified high risk genes SNPs. On the basis of M1, we added 7 estrogen metabolism enzyme genes SNPs to establish PRS model 2 (M2). The independent sample t test results show that there is no difference between BC and healthy subjects in M1 (P = 0.17), however, there is significant difference between BC and healthy subjects in M2 (P = 4.9*10− 5). The ROC curve results also show that the accuracy of M2 (AUC = 62.18%) in breast cancer risk identification was better than M1 (AUC = 54.56%). Conclusion Estrogens and the related metabolic enzymes gene polymorphisms are closely related to BC. The model constructed by adding estrogen metabolic enzyme genes SNPs has a good ability in breast cancer risk prediction, and the accuracy is greatly improved comparing PRS model only includes GWAS-identified genes SNPs.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Celine M. Vachon ◽  
Christopher G. Scott ◽  
Rulla M. Tamimi ◽  
Deborah J. Thompson ◽  
Peter A. Fasching ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document