scholarly journals Altered functional interactions between neurons in primary visual cortex of macaque monkeys with experimental amblyopia

2019 ◽  
Author(s):  
Katerina Acar ◽  
Lynne Kiorpes ◽  
J. Anthony Movshon ◽  
Matthew A. Smith

AbstractAmblyopia, a disorder in which vision through one of the eyes is degraded, arises because of defective processing of information by the visual system. Amblyopia often develops in humans after early misalignment of the eyes (strabismus), and can be simulated in macaque monkeys by artificially inducing strabismus. In such amblyopic animals, single-unit responses in primary visual cortex (V1) are appreciably reduced when evoked by the amblyopic eye compared to the other (fellow) eye. However, this degradation in single V1 neuron responsivity is not commensurate with the marked losses in visual sensitivity and resolution measured behaviorally. Here we explored the idea that changes in patterns of coordinated activity across populations of V1 neurons may contribute to degraded visual representations in amblyopia, potentially making it more difficult to read out evoked activity to support perceptual decisions. We studied the visually-evoked activity of V1 neuronal populations in three macaques (M. nemestrina) with strabismic amblyopia and in one control. Activity driven through the amblyopic eye was diminished, and these responses also showed more interneuronal correlation at all stimulus contrasts than responses driven through the fellow eye or responses in the control. A decoding analysis showed that responses driven through the amblyopic eye carried less visual information than other responses. Our results suggest that part of the reduced visual capacity of amblyopes may be due to changes in the patterns of functional interaction among neurons in V1.New and noteworthyAmblyopia is a developmental disorder of visual processing that reduces visual function and changes the visual responses of cortical neurons in macaque monkeys. The neuronal and behavioral changes are not always well correlated. We found that the interactions among neurons in the visual cortex of monkeys with amblyopia are also altered. These changes may contribute to amblyopic visual deficits by diminishing the amount of information relayed by neuronal populations driven by the amblyopic eye.


2019 ◽  
Vol 122 (6) ◽  
pp. 2243-2258 ◽  
Author(s):  
Katerina Acar ◽  
Lynne Kiorpes ◽  
J. Anthony Movshon ◽  
Matthew A. Smith

Amblyopia, a disorder in which vision through one of the eyes is degraded, arises because of defective processing of information by the visual system. Amblyopia often develops in humans after early misalignment of the eyes (strabismus) and can be simulated in macaque monkeys by artificially inducing strabismus. In such amblyopic animals, single-unit responses in primary visual cortex (V1) are appreciably reduced when evoked by the amblyopic eye compared with the other (fellow) eye. However, this degradation in single V1 neuron responsivity is not commensurate with the marked losses in visual sensitivity and resolution measured behaviorally. Here we explored the idea that changes in patterns of coordinated activity across populations of V1 neurons may contribute to degraded visual representations in amblyopia, potentially making it more difficult to read out evoked activity to support perceptual decisions. We studied the visually evoked activity of V1 neuronal populations in three macaques ( Macaca nemestrina) with strabismic amblyopia and in one control animal. Activity driven through the amblyopic eye was diminished, and these responses also showed more interneuronal correlation at all stimulus contrasts than responses driven through the fellow eye or responses in the control animal. A decoding analysis showed that responses driven through the amblyopic eye carried less visual information than other responses. Our results suggest that part of the reduced visual capacity of amblyopes may be due to changes in the patterns of functional interaction among neurons in V1. NEW & NOTEWORTHY Previous work on the neurophysiological basis of amblyopia has largely focused on relating behavioral deficits to changes in visual processing by single neurons in visual cortex. In this study, we recorded simultaneously from populations of primary visual cortical (V1) neurons in macaques with amblyopia. We found changes in the strength and pattern of shared response variability between neurons. These changes in neuronal interactions could impair the visual representations of V1 populations driven by the amblyopic eye.



2018 ◽  
Author(s):  
Andreea Lazar ◽  
Chris Lewis ◽  
Pascal Fries ◽  
Wolf Singer ◽  
Danko Nikolić

SummarySensory exposure alters the response properties of individual neurons in primary sensory cortices. However, it remains unclear how these changes affect stimulus encoding by populations of sensory cells. Here, recording from populations of neurons in cat primary visual cortex, we demonstrate that visual exposure enhances stimulus encoding and discrimination. We find that repeated presentation of brief, high-contrast shapes results in a stereotyped, biphasic population response consisting of a short-latency transient, followed by a late and extended period of reverberatory activity. Visual exposure selectively improves the stimulus specificity of the reverberatory activity, by increasing the magnitude and decreasing the trial-to-trial variability of the neuronal response. Critically, this improved stimulus encoding is distributed across the population and depends on precise temporal coordination. Our findings provide evidence for the existence of an exposure-driven optimization process that enhances the encoding power of neuronal populations in early visual cortex, thus potentially benefiting simple readouts at higher stages of visual processing.



2005 ◽  
Vol 94 (2) ◽  
pp. 1336-1345 ◽  
Author(s):  
Bartlett D. Moore ◽  
Henry J. Alitto ◽  
W. Martin Usrey

The activity of neurons in primary visual cortex is influenced by the orientation, contrast, and temporal frequency of a visual stimulus. This raises the question of how these stimulus properties interact to shape neuronal responses. While past studies have shown that the bandwidth of orientation tuning is invariant to stimulus contrast, the influence of temporal frequency on orientation-tuning bandwidth is unknown. Here, we investigate the influence of temporal frequency on orientation tuning and direction selectivity in area 17 of ferret visual cortex. For both simple cells and complex cells, measures of orientation-tuning bandwidth (half-width at half-maximum response) are ∼20–25° across a wide range of temporal frequencies. Thus cortical neurons display temporal-frequency invariant orientation tuning. In contrast, direction selectivity is typically reduced, and occasionally reverses, at nonpreferred temporal frequencies. These results show that the mechanisms contributing to the generation of orientation tuning and direction selectivity are differentially affected by the temporal frequency of a visual stimulus and support the notion that stability of orientation tuning is an important aspect of visual processing.



Author(s):  
R. Oz ◽  
H. Edelman-Klapper ◽  
S. Nivinsky-Margalit ◽  
H. Slovin

AbstractIntra cortical microstimulation (ICMS) in the primary visual cortex (V1) can generate the visual perception of phosphenes and evoke saccades directed to the stimulated location in the retinotopic map. Although ICMS is widely used, little is known about the evoked spatio-temporal patterns of neural activity and their relation to neural responses evoked by visual stimuli or saccade generation. To investigate this, we combined ICMS with Voltage Sensitive Dye Imaging in V1 of behaving monkeys and measured neural activity at high spatial (meso-scale) and temporal resolution. Small visual stimuli and ICMS evoked population activity spreading over few mm that propagated to extrastriate areas. The population responses evoked by ICMS showed faster dynamics and different spatial propagation patterns. Neural activity was higher in trials w/saccades compared with trials w/o saccades. In conclusion, our results uncover the spatio-temporal patterns evoked by ICMS and their relation to visual processing and saccade generation.



2016 ◽  
Author(s):  
Dylan R Muir ◽  
Patricia Molina-Luna ◽  
Morgane M Roth ◽  
Fritjof Helmchen ◽  
Björn M Kampa

AbstractLocal excitatory connections in mouse primary visual cortex (V1) are stronger and more prevalent between neurons that share similar functional response features. However, the details of how functional rules for local connectivity shape neuronal responses in V1 remain unknown. We hypothesised that complex responses to visual stimuli may arise as a consequence of rules for selective excitatory connectivity within the local network in the superficial layers of mouse V1. In mouse V1 many neurons respond to overlapping grating stimuli (plaid stimuli) with highly selective and facilitatory responses, which are not simply predicted by responses to single gratings presented alone. This complexity is surprising, since excitatory neurons in V1 are considered to be mainly tuned to single preferred orientations. Here we examined the consequences for visual processing of two alternative connectivity schemes: in the first case, local connections are aligned with visual properties inherited from feedforward input (a ‘like-to-like’ scheme specifically connecting neurons that share similar preferred orientations); in the second case, local connections group neurons into excitatory subnetworks that combine and amplify multiple feedforward visual properties (a ‘feature binding’ scheme). By comparing predictions from large scale computational models with in vivo recordings of visual representations in mouse V1, we found that responses to plaid stimuli were best explained by a assuming ‘feature binding’ connectivity. Unlike under the ‘like-to-like’ scheme, selective amplification within feature-binding excitatory subnetworks replicated experimentally observed facilitatory responses to plaid stimuli; explained selective plaid responses not predicted by grating selectivity; and was consistent with broad anatomical selectivity observed in mouse V1. Our results show that visual feature binding can occur through local recurrent mechanisms without requiring feedforward convergence, and that such a mechanism is consistent with visual responses and cortical anatomy in mouse V1.Author summaryThe brain is a highly complex structure, with abundant connectivity between nearby neurons in the neocortex, the outermost and evolutionarily most recent part of the brain. Although the network architecture of the neocortex can appear disordered, connections between neurons seem to follow certain rules. These rules most likely determine how information flows through the neural circuits of the brain, but the relationship between particular connectivity rules and the function of the cortical network is not known. We built models of visual cortex in the mouse, assuming distinct rules for connectivity, and examined how the various rules changed the way the models responded to visual stimuli. We also recorded responses to visual stimuli of populations of neurons in anaesthetised mice, and compared these responses with our model predictions. We found that connections in neocortex probably follow a connectivity rule that groups together neurons that differ in simple visual properties, to build more complex representations of visual stimuli. This finding is surprising because primary visual cortex is assumed to support mainly simple visual representations. We show that including specific rules for non-random connectivity in cortical models, and precisely measuring those rules in cortical tissue, is essential to understanding how information is processed by the brain.



2017 ◽  
Author(s):  
Aman B. Saleem ◽  
E. Mika Diamanti ◽  
Julien Fournier ◽  
Kenneth D. Harris ◽  
Matteo Carandini

A major role of vision is to guide navigation, and navigation is strongly driven by vision1-4. Indeed, the brain’s visual and navigational systems are known to interact5, 6, and signals related to position in the environment have been suggested to appear as early as in visual cortex6, 7. To establish the nature of these signals we recorded in primary visual cortex (V1) and in the CA1 region of the hippocampus while mice traversed a corridor in virtual reality. The corridor contained identical visual landmarks in two positions, so that a purely visual neuron would respond similarly in those positions. Most V1 neurons, however, responded solely or more strongly to the landmarks in one position. This modulation of visual responses by spatial location was not explained by factors such as running speed. To assess whether the modulation is related to navigational signals and to the animal’s subjective estimate of position, we trained the mice to lick for a water reward upon reaching a reward zone in the corridor. Neuronal populations in both CA1 and V1 encoded the animal’s position along the corridor, and the errors in their representations were correlated. Moreover, both representations reflected the animal’s subjective estimate of position, inferred from the animal’s licks, better than its actual position. Indeed, when animals licked in a given location – whether correct or incorrect – neural populations in both V1 and CA1 placed the animal in the reward zone. We conclude that visual responses in V1 are tightly controlled by navigational signals, which are coherent with those encoded in hippocampus, and reflect the animal’s subjective position in the environment. The presence of such navigational signals as early as in a primary sensory area suggests that these signals permeate sensory processing in the cortex.



2010 ◽  
Vol 104 (5) ◽  
pp. 2615-2623 ◽  
Author(s):  
Nicholas J. Priebe ◽  
Ilan Lampl ◽  
David Ferster

In contrast to neurons of the lateral geniculate nucleus (LGN), neurons in the primary visual cortex (V1) are selective for the direction of visual motion. Cortical direction selectivity could emerge from the spatiotemporal configuration of inputs from thalamic cells, from intracortical inhibitory interactions, or from a combination of thalamic and intracortical interactions. To distinguish between these possibilities, we studied the effect of adaptation (prolonged visual stimulation) on the direction selectivity of intracellularly recorded cortical neurons. It is known that adaptation selectively reduces the responses of cortical neurons, while largely sparing the afferent LGN input. Adaptation can therefore be used as a tool to dissect the relative contribution of afferent and intracortical interactions to the generation of direction selectivity. In both simple and complex cells, adaptation caused a hyperpolarization of the resting membrane potential (−2.5 mV, simple cells, −0.95 mV complex cells). In simple cells, adaptation in either direction only slightly reduced the visually evoked depolarization; this reduction was similar for preferred and null directions. In complex cells, adaptation strongly reduced visual responses in a direction-dependent manner: the reduction was largest when the stimulus direction matched that of the adapting motion. As a result, adaptation caused changes in the direction selectivity of complex cells: direction selectivity was reduced after preferred direction adaptation and increased after null direction adaptation. Because adaptation in the null direction enhanced direction selectivity rather than reduced it, it seems unlikely that inhibition from the null direction is the primary mechanism for creating direction selectivity.



2017 ◽  
Author(s):  
Mean-Hwan Kim ◽  
Petr Znamenskiy ◽  
Maria Florencia Iacaruso ◽  
Thomas D. Mrsic-Flogel

The rules by which neurons in neocortex choose their synaptic partners are not fully understood. In sensory cortex, intermingled neurons encode different attributes of sensory inputs and relay them to different long-range targets. While neurons with similar responses to sensory stimuli make connections preferentially, the relationship between synaptic connectivity within an area and long-range projection target remains unclear. We examined the local connectivity and visual responses of primary visual cortex neurons projecting to anterolateral (AL) and posteromedial (PM) higher visual areas in mice. Although the response properties of layer 2/3 neurons projecting to different targets were often similar, they avoided making connections with each other. Thus, projection target acts independently of response similarity to constrain local synaptic connectivity of cortical neurons. We propose that this segregated connectivity rule reduces the crosstalk between different populations of projection neurons, allowing top-down signal to modulate the activity of these output channels independently.



NeuroImage ◽  
2012 ◽  
Vol 63 (3) ◽  
pp. 1464-1477 ◽  
Author(s):  
Andreas A. Ioannides ◽  
Vahe Poghosyan ◽  
Lichan Liu ◽  
George A. Saridis ◽  
Marco Tamietto ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document