scholarly journals Simultaneous regulation of cytokinetic furrow and nucleus positions by cortical tension contributes to proper DNA segregation during late mitosis

2019 ◽  
Author(s):  
Anne Pacquelet ◽  
Matthieu Jousseaume ◽  
Jocelyn Etienne ◽  
Grégoire Michaux

AbstractCoordinating mitotic spindle and cytokinetic furrow positioning is essential to ensure proper DNA segregation. Here we present a novel mechanism, which corrects DNA segregation defects due to cytokinetic furrow mispositioning. We show that DNA segregation defects following the abnormal displacement of the cytokinetic furrow towards the anterior side of C. elegans one-cell embryos are unexpectedly corrected at the end of cytokinesis. This correction relies on the concomitant displacement of the furrow and of the anterior nucleus towards the posterior and anterior poles, respectively. It also coincides with cortical blebbing and an anteriorly directed flow of cytoplasmic particles. While microtubules contribute to nuclear displacement, relaxation of an excessive tension at the anterior cortex plays a central role in the correction process and simultaneously regulates cytoplasmic flow as well as nuclear and furrow displacements. This work thus reveals the existence of a so far uncharacterized correction mechanism, which is critical to correct DNA segregation defects due to cytokinetic furrow mispositioning.


2019 ◽  
Vol 29 (22) ◽  
pp. 3766-3777.e4 ◽  
Author(s):  
Anne Pacquelet ◽  
Matthieu Jousseaume ◽  
Jocelyn Etienne ◽  
Grégoire Michaux


2015 ◽  
Vol 210 (7) ◽  
pp. 1085-1099 ◽  
Author(s):  
Anne Pacquelet ◽  
Perrine Uhart ◽  
Jean-Pierre Tassan ◽  
Grégoire Michaux

During asymmetric cell division, the mitotic spindle and polarized myosin can both determine the position of the cytokinetic furrow. However, how cells coordinate signals from the spindle and myosin to ensure that cleavage occurs through the spindle midzone is unknown. Here, we identify a novel pathway that is essential to inhibit myosin and coordinate furrow and spindle positions during asymmetric division. In Caenorhabditis elegans one-cell embryos, myosin localizes at the anterior cortex whereas the mitotic spindle localizes toward the posterior. We find that PAR-4/LKB1 impinges on myosin via two pathways, an anillin-dependent pathway that also responds to the cullin CUL-5 and an anillin-independent pathway involving the kinase PIG-1/MELK. In the absence of both PIG-1/MELK and the anillin ANI-1, myosin accumulates at the anterior cortex and induces a strong displacement of the furrow toward the anterior, which can lead to DNA segregation defects. Regulation of asymmetrically localized myosin is thus critical to ensure that furrow and spindle midzone positions coincide throughout cytokinesis.



Development ◽  
1996 ◽  
Vol 122 (1) ◽  
pp. 391-404 ◽  
Author(s):  
H. Browning ◽  
S. Strome

The paternal-effect embryonic-lethal gene, spe-11, is required for normal development of early C. elegans embryos. Spe-11 embryos fail to complete meiosis, form a weak eggshell, fail to orient properly the first mitotic spindle, and fail to undergo cytokinesis. Here we report cloning and sequencing of the spe-11 gene, which encodes a novel protein. As predicted by the paternal-effect mutant phenotype, the gene is expressed during spermatogenesis but is not detectable in females undergoing oogenesis, and the protein is present in mature sperm. To investigate whether SPE-11's essential function is during spermatogenesis or whether sperm-delivered SPE-11 functions in the newly fertilized embryo, we engineered animals to supply SPE-11 to the embryo through the oocyte rather than through the sperm. We found that maternal expression is sufficient for embryonic viability. This result demonstrates that SPE-11 is not required during spermatogenesis, and suggests that SPE-11 is a sperm-supplied factor that participates directly in development of the early embryo. In contrast to the many known maternal factors required for embryogenesis, SPE-11 is the first paternally contributed factor to be genetically identified and molecularly characterized.



2004 ◽  
Vol 167 (2) ◽  
pp. 245-256 ◽  
Author(s):  
Jean-Claude Labbé ◽  
Erin K. McCarthy ◽  
Bob Goldstein

Regulation of the mitotic spindle's position is important for cells to divide asymmetrically. Here, we use Caenorhabditis elegans embryos to provide the first analysis of the temporal regulation of forces that asymmetrically position a mitotic spindle. We find that asymmetric pulling forces, regulated by cortical PAR proteins, begin to act as early as prophase and prometaphase, even before the spindle forms and shifts to a posterior position. The spindle does not shift asymmetrically during these early phases due to a tethering force, mediated by astral microtubules that reach the anterior cell cortex. We show that this tether is normally released after spindle assembly and independently of anaphase entry. Monitoring microtubule dynamics by photobleaching segments of microtubules during anaphase revealed that spindle microtubules do not undergo significant poleward flux in C. elegans. Together with the known absence of anaphase A, these data suggest that the major forces contributing to chromosome separation during anaphase originate outside the spindle. We propose that the forces positioning the mitotic spindle asymmetrically are tethered until after the time of spindle assembly and that these same forces are used later to drive chromosome segregation at anaphase.



2003 ◽  
Vol 9 (S03) ◽  
pp. 384-385
Author(s):  
Eileen T. O'Toole ◽  
Kent L. McDonald ◽  
Jana Mäntler ◽  
J. Richard McIntosh ◽  
Anthony A. Hyman ◽  
...  


2011 ◽  
Vol 124 (20) ◽  
pp. e1-e1
Author(s):  
A. D. Werts ◽  
M. Roh-Johnson ◽  
B. Goldstein


2020 ◽  
Vol 219 (6) ◽  
Author(s):  
Nicolas Joly ◽  
Eva Beaumale ◽  
Lucie Van Hove ◽  
Lisa Martino ◽  
Lionel Pintard

The evolutionarily conserved microtubule (MT)-severing AAA-ATPase enzyme Katanin is emerging as a critical regulator of MT dynamics. In Caenorhabditis elegans, Katanin MT-severing activity is essential for meiotic spindle assembly but is toxic for the mitotic spindle. Here we analyzed Katanin dynamics in C. elegans and deciphered the role of Katanin phosphorylation in the regulation of its activity and stability. Katanin is abundant in oocytes, and its levels drop after meiosis, but unexpectedly, a significant fraction is present throughout embryogenesis, where it is dynamically recruited to the centrosomes and chromosomes during mitosis. We show that the minibrain kinase MBK-2, which is activated during meiosis, phosphorylates Katanin at multiple serines. We demonstrate unequivocally that Katanin phosphorylation at a single residue is necessary and sufficient to target Katanin for proteasomal degradation after meiosis, whereas phosphorylation at the other sites only inhibits Katanin ATPase activity stimulated by MTs. Our findings suggest that cycles of phosphorylation and dephosphorylation fine-tune Katanin level and activity to deliver the appropriate MT-severing activity during development.



2000 ◽  
Vol 14 (9) ◽  
pp. 1072-1084
Author(s):  
Martin Srayko ◽  
Dan W. Buster ◽  
Omar A. Bazirgan ◽  
Francis J. McNally ◽  
Paul E. Mains

The Caenorhabditis elegans meiotic spindle is morphologically distinct from the first mitotic spindle, yet both structures form in the same cytoplasm ∼20 minutes apart. Themei-1 and mei-2 genes of C. elegans are required for the establishment of the oocyte meiotic spindle but are not required for mitotic spindle function. mei-1 encodes an AAA ATPase family member with similarity to the p60 catalytic subunit of the heterodimeric sea urchin microtubule-severing protein, katanin. We report that mei-2 encodes a 280-amino acid protein containing a region similar to the p80-targeting subunit of katanin. MEI-1 and MEI-2 antibodies decorate the polar ends of meiotic spindle microtubules and meiotic chromatin. We find that the subcellular location of MEI-2 depends on wild-type mei-1 activity and vice versa. These experiments, combined with MEI-1 and MEI-2's similarity to p60 and p80 katanin, suggest that the C. elegans proteins function as a complex. In support of this idea, MEI-1 and MEI-2 physically associate in HeLa cells. Furthermore, co-expression of MEI-1 and MEI-2 in HeLa cells results in the disassembly of microtubules. These data lead us to conclude that MEI-1/MEI-2 microtubule-severing activity is required for meiotic spindle organization in C. elegans.



2021 ◽  
Author(s):  
Griselda VELEZ-AGUILERA ◽  
Batool OSSAREH-NAZARI ◽  
Lucie VAN HOVE ◽  
Nicolas Joly ◽  
Lionel Pintard

Previously, we reported that the Polo-like kinase PLK-1 phosphorylates the single C. elegans lamin (LMN-1) to trigger lamina depolymerization during mitosis. We showed that this event is required for the formation of a pronuclear envelopes scission event that removes membranes on the juxtaposed oocyte and sperm pronuclear envelopes in the zygote, allowing the parental chromosomes to merge in a single nucleus after segregation (Velez-Aguilera, 2020). Here we show that cortical microtubule pulling forces contribute to pronuclear envelopes scission by promoting mitotic spindle elongation. We also demonstrate that weakening of the pronuclear envelopes, via PLK-1-mediated lamina depolymerization, is a prerequisite for the astral microtubule pulling forces to trigger pronuclear membranes scission. Finally, we provide evidence that PLK-1 mainly acts via lamina depolymerization in this process. These observations thus indicate that temporal coordination between lamina depolymerization and mitotic spindle elongation facilitates pronuclear envelopes scission and parental genomes unification.



Sign in / Sign up

Export Citation Format

Share Document