microtubule severing
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 59)

H-INDEX

42
(FIVE YEARS 4)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Elizabeth J Lawrence ◽  
Goker Arpag ◽  
Cayetana Arnaiz ◽  
Marija Zanic

Sjögren's Syndrome Nuclear Autoantigen 1 (SSNA1/NA14) is a microtubule-associated protein with important functions in cilia, dividing cells and developing neurons. However, the direct effects of SSNA1 on microtubules are not known. We employed in vitro reconstitution with purified proteins and TIRF microscopy to investigate the activity of human SSNA1 on dynamic microtubule ends and lattices. Our results show that SSNA1 modulates all parameters of microtubule dynamic instability - slowing down the rates of growth, shrinkage and catastrophe, and promoting rescue. We find that SSNA1 forms stretches along growing microtubule ends and binds cooperatively to the microtubule lattice. Furthermore, SSNA1 is enriched on microtubule damage sites, occurring both naturally, as well as induced by the microtubule severing enzyme spastin. Finally, SSNA1 binding protects microtubules against spastin's severing activity. Taken together, our results demonstrate that SSNA1 is both a potent microtubule stabilizing protein and a novel sensor of microtubule damage; activities that likely underlie SSNA1's functions on microtubule structures in cells.


2021 ◽  
Author(s):  
Joyce C.M. Meiring ◽  
Ilya Grigoriev ◽  
Wilco Nijenhuis ◽  
Lukas C. Kapitein ◽  
Anna Akhmanova

Microtubules are major cytoskeletal filaments that drive chromosome separation during cell division, serve as rails for intracellular transport and as a scaffold for organelle positioning. Experimental manipulation of microtubules is widely used in cell and developmental biology, but tools for precise subcellular spatiotemporal control of microtubule integrity are currently lacking. Here, we exploit the dependence of the mammalian microtubule-severing protein katanin on microtubule-targeting co-factors to generate a light-activated system for localized microtubule disassembly that we named opto-katanin. Targeted illumination with blue light induces rapid and localized opto-katanin recruitment and local microtubule depolymerization, which is quickly reversible after stopping light-induced activation. Opto-katanin can be employed to locally perturb microtubule-based transport and organelle morphology in dividing cells and differentiated neurons with high spatiotemporal precision. We show that different microtubule-associated proteins can be used to recruit opto-katanin to microtubules and induce severing, paving the way for spatiotemporally precise manipulation of specific microtubule subpopulations.


2021 ◽  
Vol 118 (51) ◽  
pp. e2112261118
Author(s):  
Ankit Rai ◽  
Tianyang Liu ◽  
Eugene A. Katrukha ◽  
Juan Estévez-Gallego ◽  
Szymon W. Manka ◽  
...  

Microtubules are dynamic cytoskeletal polymers that spontaneously switch between phases of growth and shrinkage. The probability of transitioning from growth to shrinkage, termed catastrophe, increases with microtubule age, but the underlying mechanisms are poorly understood. Here, we set out to test whether microtubule lattice defects formed during polymerization can affect growth at the plus end. To generate microtubules with lattice defects, we used microtubule-stabilizing agents that promote formation of polymers with different protofilament numbers. By employing different agents during nucleation of stable microtubule seeds and the subsequent polymerization phase, we could reproducibly induce switches in protofilament number and induce stable lattice defects. Such drug-induced defects led to frequent catastrophes, which were not observed when microtubules were grown in the same conditions but without a protofilament number mismatch. Microtubule severing at the site of the defect was sufficient to suppress catastrophes. We conclude that structural defects within the microtubule lattice can exert effects that can propagate over long distances and affect the dynamic state of the microtubule end.


2021 ◽  
pp. 763-771
Author(s):  
Yuichi Akaba ◽  
Ryo Takeguchi ◽  
Ryosuke Tanaka ◽  
Satoru Takahashi

Hereditary spastic paraplegias (HSPs) are rare neurological disorders caused by degeneration of the corticospinal tract. Among the 79 causative genes involved in HSPs, variants in <i>SPAST</i> on chromosome 2p22, which encodes the microtubule-severing protein spastin, are responsible for spastic paraplegia type 4 (SPG4), the most common form of HSPs. SPG4 is characterized by a clinically pure phenotype that is associated with restricted involvement of the corticospinal tract; however, it is often accompanied by additional neurological symptoms such as epilepsy and cognitive impairment. There are few reports regarding the clinical course and treatment of epilepsy associated with SPG4. We describe a 21-year-old male patient with progressive weakness and spasticity of the lower limbs since infancy, which was complicated by epilepsy and cognitive impairment. Magnetic resonance imaging of the brain showed right hippocampal atrophy before the onset of epilepsy. Genetic analysis revealed a novel missense variant (NM_014946.4:c.1330G&#x3e;C, p.Asp444His) in the <i>SPAST</i> gene. At the age of 13, the patient developed focal epilepsy, characterized by focal onset seizures that were preceded by a sensation of chest tightness. Carbamazepine, levetiracetam, and zonisamide were ineffective in controlling the seizures; however, the use of lacosamide in combination with lamotrigine and valproate was highly effective in improving the seizure symptoms and led to the patient being seizure free for at least 2 years. In conclusion, the missense variant in <i>SPAST</i> may cause a complex SPG4 phenotype accompanied by epilepsy and cognitive impairment, suggesting that the clinical manifestations of this condition do not confine to the motor system.


2021 ◽  
Vol 65 (4) ◽  
Author(s):  
Jianyu Zou ◽  
Zhenbin Cai ◽  
Zhi Liang ◽  
Yaozhong Liang ◽  
Guowei Zhang ◽  
...  

Spastin is one of the proteins which lead to hereditary spastic paraplegia (HSP), whose dysfunction towards microtubule severing and membrane transporting is critically important. The present study is to elucidate the mechanisms of the protein stability regulation of spastin. The ubiquitin encoding plasmids are transfected into COS-7 cells with different fusion tags including Green Fluorescent Protein (GFP), mCherry and Flag. The expression level of spastin was detected, microtubule severing activity and neurite outgrowth were quantified. The data showed that ubiquitin overexpression significantly induced the decreased expression of spastin, suppressed the activity of microtubule severing in COS-7 cells and inhibited the promoting effect on neurite outgrowth in cultured hippocampal neurons. Furthermore, when modulating the overexpression experiments of ubiquitin, it was found that relatively small tag like Flag, but not large tags such as GFP or mCherry fused with ubiquitin, retained the activity on spastin stability. The present study investigated the effects of small/large tags addition to ubiquitin and the novel mechanisms of post-transcriptional modifications of spastin on regulating neurite outgrowth, in the attempt to experimentally elucidate the mechanisms that control the level or stability of spastin in hereditary spastic paraplegia.


Development ◽  
2021 ◽  
Author(s):  
Jessica E. M. Dunleavy ◽  
Anne E. O'Connor ◽  
Hidenobu Okuda ◽  
D. Jo Merriner ◽  
Moira K. O'Bryan

Katanin microtubule severing enzymes are critical executers of microtubule regulation. Here, we have created an allelic loss-of-function series of katanin regulatory B-subunit KATNB1 in mice. We reveal KATNB1 is the master regulator of all katanin enzymatic A-subunits during mammalian spermatogenesis, wherein it is required to maintain katanin A-subunit abundance. Our data shows complete loss of KATNB1 from germ cells is incompatible with sperm production, and we reveal multiple new spermatogenesis functions for KATNB1, including critical roles in male meiosis, in acrosome formation, in sperm tail assembly, in regulating both the Sertoli and germ cell cytoskeletons during sperm nuclear remodelling and in maintaining seminiferous epithelium integrity. Collectively, our findings reveal that katanins are able to differentially regulate almost all key microtubule-based structures during mammalian male germ cell development, through the complexing of one master controller, KATNB1, with a ‘toolbox’ of neofunctionalized katanin A-subunits.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hao Liu ◽  
Jianqun Zheng ◽  
Lei Zhu ◽  
Lele Xie ◽  
Yawen Chen ◽  
...  

AbstractThe axonemal central pair (CP) are non-centrosomal microtubules critical for planar ciliary beat. How they form, however, is poorly understood. Here, we show that mammalian CP formation requires Wdr47, Camsaps, and microtubule-severing activity of Katanin. Katanin severs peripheral microtubules to produce central microtubule seeds in nascent cilia. Camsaps stabilize minus ends of the seeds to facilitate microtubule outgrowth, whereas Wdr47 concentrates Camsaps into the axonemal central lumen to properly position central microtubules. Wdr47 deficiency in mouse multicilia results in complete loss of CP, rotatory beat, and primary ciliary dyskinesia. Overexpression of Camsaps or their microtubule-binding regions induces central microtubules in Wdr47−/− ependymal cells but at the expense of low efficiency, abnormal numbers, and wrong location. Katanin levels and activity also impact the central microtubule number. We propose that Wdr47, Camsaps, and Katanin function together for the generation of non-centrosomal microtubule arrays in polarized subcellular compartments.


2021 ◽  
Vol 22 (17) ◽  
pp. 9397
Author(s):  
Haruka Sudo ◽  
Akira Kubo

Diabetes mellitus (DM) is considered to be associated with an increased risk of colorectal cancer. Recent studies have also revealed that tubulin hyperacetylation is caused by a diabetic status and we have reported previously that, under microtubule hyperacetylation, a microtubule severing protein, katanin-like (KL) 1, is upregulated and contributes to tumorigenesis. To further explore this phenomenon, we tested the effects of the ketone bodies, acetoacetate and β-hydroxybutyrate, in colon and fibroblast cells. Both induced microtubule hyperacetylation that responded differently to a histone deacetylase 3 knockdown. These two ketone bodies also generated intracellular reactive oxygen species (ROS) and hyperacetylation was commonly inhibited by ROS inhibitors. In a human fibroblast-based microtubule sensitivity test, only the KL1 human katanin family member showed activation by both ketone bodies. In primary cultured colon epithelial cells, these ketone bodies reduced the tau protein level and induced KL1- and α-tubulin acetyltransferase 1 (ATAT1)-dependent micronucleation. Resveratrol, known for its tumor preventive and tubulin deacetylation effects, inhibited this micronucleation. Our current data thus suggest that the microtubule hyperacetylation induced by ketone bodies may be a causal factor linking DM to colorectal carcinogenesis and may also represent an adverse effect of them that needs to be controlled if they are used as therapeutics.


2021 ◽  
Vol 11 (8) ◽  
pp. 1081
Author(s):  
Neha Mohan ◽  
Liang Qiang ◽  
Gerardo Morfini ◽  
Peter W. Baas

Mutations of the SPAST gene that encodes the microtubule-severing enzyme called spastin are the chief cause of Hereditary Spastic Paraplegia. Growing evidence indicates that pathogenic mutations functionally compromise the spastin protein and endow it with toxic gain-of-function properties. With each of these two factors potentially relevant to disease etiology, the present article discusses possible therapeutic strategies that may ameliorate symptoms in patients suffering from SPAST-based Hereditary Spastic Paraplegia, which is usually termed SPG4-HSP.


Author(s):  
Nicole A. Lynn ◽  
Emily Martinez ◽  
Hieu Nguyen ◽  
Jorge Z. Torres

The katanin family of microtubule-severing enzymes is critical for cytoskeletal rearrangements that affect key cellular processes like division, migration, signaling, and homeostasis. In humans, aberrant expression, or dysfunction of the katanins, is linked to developmental, proliferative, and neurodegenerative disorders. Here, we review current knowledge on the mammalian family of katanins, including an overview of evolutionary conservation, functional domain organization, and the mechanisms that regulate katanin activity. We assess the function of katanins in dividing and non-dividing cells and how their dysregulation promotes impaired ciliary signaling and defects in developmental programs (corticogenesis, gametogenesis, and neurodevelopment) and contributes to neurodegeneration and cancer. We conclude with perspectives on future katanin research that will advance our understanding of this exciting and dynamic class of disease-associated enzymes.


Sign in / Sign up

Export Citation Format

Share Document