scholarly journals MEI-1/MEI-2 katanin-like microtubule severing activity is required for Caenorhabditis elegans meiosis

2000 ◽  
Vol 14 (9) ◽  
pp. 1072-1084
Author(s):  
Martin Srayko ◽  
Dan W. Buster ◽  
Omar A. Bazirgan ◽  
Francis J. McNally ◽  
Paul E. Mains

The Caenorhabditis elegans meiotic spindle is morphologically distinct from the first mitotic spindle, yet both structures form in the same cytoplasm ∼20 minutes apart. Themei-1 and mei-2 genes of C. elegans are required for the establishment of the oocyte meiotic spindle but are not required for mitotic spindle function. mei-1 encodes an AAA ATPase family member with similarity to the p60 catalytic subunit of the heterodimeric sea urchin microtubule-severing protein, katanin. We report that mei-2 encodes a 280-amino acid protein containing a region similar to the p80-targeting subunit of katanin. MEI-1 and MEI-2 antibodies decorate the polar ends of meiotic spindle microtubules and meiotic chromatin. We find that the subcellular location of MEI-2 depends on wild-type mei-1 activity and vice versa. These experiments, combined with MEI-1 and MEI-2's similarity to p60 and p80 katanin, suggest that the C. elegans proteins function as a complex. In support of this idea, MEI-1 and MEI-2 physically associate in HeLa cells. Furthermore, co-expression of MEI-1 and MEI-2 in HeLa cells results in the disassembly of microtubules. These data lead us to conclude that MEI-1/MEI-2 microtubule-severing activity is required for meiotic spindle organization in C. elegans.

2020 ◽  
Vol 219 (6) ◽  
Author(s):  
Nicolas Joly ◽  
Eva Beaumale ◽  
Lucie Van Hove ◽  
Lisa Martino ◽  
Lionel Pintard

The evolutionarily conserved microtubule (MT)-severing AAA-ATPase enzyme Katanin is emerging as a critical regulator of MT dynamics. In Caenorhabditis elegans, Katanin MT-severing activity is essential for meiotic spindle assembly but is toxic for the mitotic spindle. Here we analyzed Katanin dynamics in C. elegans and deciphered the role of Katanin phosphorylation in the regulation of its activity and stability. Katanin is abundant in oocytes, and its levels drop after meiosis, but unexpectedly, a significant fraction is present throughout embryogenesis, where it is dynamically recruited to the centrosomes and chromosomes during mitosis. We show that the minibrain kinase MBK-2, which is activated during meiosis, phosphorylates Katanin at multiple serines. We demonstrate unequivocally that Katanin phosphorylation at a single residue is necessary and sufficient to target Katanin for proteasomal degradation after meiosis, whereas phosphorylation at the other sites only inhibits Katanin ATPase activity stimulated by MTs. Our findings suggest that cycles of phosphorylation and dephosphorylation fine-tune Katanin level and activity to deliver the appropriate MT-severing activity during development.


2000 ◽  
Vol 113 (16) ◽  
pp. 2821-2827 ◽  
Author(s):  
L. Quarmby

Recent biochemical studies of the AAA ATPase, katanin, provide a foundation for understanding how microtubules might be severed along their length. These in vitro studies are complemented by a series of recent reports of direct in vivo observation of microtubule breakage, which indicate that the in vitro phenomenon of catalysed microtubule severing is likely to be physiological. There is also new evidence that microtubule severing by katanin is important for the production of non-centrosomal microtubules in cells such as neurons and epithelial cells. Although it has been difficult to establish the role of katanin in mitosis, new genetic evidence indicates that a katanin-like protein, MEI-1, plays an essential role in meiosis in C. elegans. Finally, new proteins involved in the severing of axonemal microtubules have been discovered in the deflagellation system of Chlamydomonas.


2004 ◽  
Vol 15 (1) ◽  
pp. 142-150 ◽  
Author(s):  
Chenggang Lu ◽  
Martin Srayko ◽  
Paul E. Mains

The microtubule-severing protein complex katanin is required for a variety of important microtubule-base morphological changes in both animals and plants. Caenorhabditis elegans katanin is encoded by the mei-1 and mei-2 genes and is required for oocyte meiotic spindle formation and must be inactivated before the first mitotic cleavage. We identified a mutation, sb26, in the tbb-2 β-tubulin gene that partially inhibits MEI-1/MEI-2 activity: sb26 rescues lethality caused by ectopic MEI-1/MEI-2 expression during mitosis, and sb26 increases meiotic defects in a genetic background where MEI-1/MEI-2 activity is lower than normal. sb26 does not interfere with MEI-1/MEI-2 microtubule localization, suggesting that this mutation likely interferes with severing. Tubulin deletion alleles and RNA-mediated interference revealed that TBB-2 and the other germline enriched β-tubulin isotype, TBB-1, are redundant for embryonic viability. However, limiting MEI-1/MEI-2 activity in these experiments revealed that MEI-1/MEI-2 preferentially interacts with TBB-2–containing microtubules. Our results demonstrate that these two superficially redundant β-tubulin isotypes have functionally distinct roles in vivo.


Yeast ◽  
2000 ◽  
Vol 1 (3) ◽  
pp. 188-200
Author(s):  
Aner Gurvitz ◽  
Sigrid Langer ◽  
Martin Piskacek ◽  
Barbara Hamilton ◽  
Helmut Ruis ◽  
...  

The role of peroxisomal processes in the maintenance of neurons has not been thoroughly investigated. We propose using Caenorhabditis elegans as a model organism for studying the molecular basis underlying neurodegeneration in certain human peroxisomal disorders, e.g. Zellweger syndrome, since the nematode neural network is well characterized and relatively simple in function. Here we have identified C. elegans PEX-5 (C34C6.6) representing the receptor for peroxisomal targeting signal type 1 (PTS1), defective in patients with such disorders. PEX-5 interacted strongly in a two-hybrid assay with Gal4p–SKL, and a screen using PEX-5 identified interaction partners that were predominantly terminated with PTS1 or its variants. A list of C. elegans proteins with similarities to well-characterized yeast β-oxidation enzymes was compiled by homology probing. The possible subcellular localization of these orthologues was predicted using an algorithm based on trafficking signals. Examining the C termini of selected nematode proteins for PTS1 function substantiated predictions made regarding the proteins' peroxisomal location. It is concluded that the eukaryotic PEX5-dependent route for importing PTS1-containing proteins into peroxisomes is conserved in nematodes. C. elegans might emerge as an attractive model system for studying the importance of peroxisomes and affiliated processes in neurodegeneration, and also for studying a β-oxidation process that is potentially compartmentalized in both mitochondria and peroxisomes.


1993 ◽  
Vol 121 (6) ◽  
pp. 1343-1355 ◽  
Author(s):  
S N Hird ◽  
J G White

We have examined the cortex of Caenorhabditis elegans eggs during pseudocleavage (PC), a period of the first cell cycle which is important for the generation of asymmetry at first cleavage (Strome, S. 1989. Int. Rev. Cytol. 114: 81-123). We have found that directed, actin dependent, cytoplasmic, and cortical flow occurs during this period coincident with a rearrangement of the cortical actin cytoskeleton (Strome, S. 1986. J. Cell Biol. 103: 2241-2252). The flow velocity (4-7 microns/min) is similar to previously determined particle movements driven by cortical actin flows in motile cells. We show that directed flows occur in one of the daughters of the first division that itself divides asymmetrically, but not in its sister that divides symmetrically. The cortical and cytoplasmic events of PC can be mimicked in other cells during cytokinesis by displacing the mitotic apparatus with the microtubule polymerization inhibitor nocodazole. In all cases, the polarity of the resulting cortical and cytoplasmic flows correlates with the position of the attenuated mitotic spindle formed. These cortical flows are also accompanied by a change in the distribution of the cortical actin network. The polarity of this redistribution is similarly correlated with the location of the attenuated spindle. These observations suggest a mechanism for generating polarized flows of cytoplasmic and cortical material during embryonic cleavages. We present a model for the events of PC and suggest how the poles of the mitotic spindle mediate the formation of the contractile ring during cytokinesis in C. elegans.


2015 ◽  
Vol 26 (17) ◽  
pp. 3030-3046 ◽  
Author(s):  
Marina E. Crowder ◽  
Jonathan R. Flynn ◽  
Karen P. McNally ◽  
Daniel B. Cortes ◽  
Kari L. Price ◽  
...  

Oocyte meiotic spindles orient with one pole juxtaposed to the cortex to facilitate extrusion of chromosomes into polar bodies. In Caenorhabditis elegans, these acentriolar spindles initially orient parallel to the cortex and then rotate to the perpendicular orientation. To understand the mechanism of spindle rotation, we characterized events that correlated temporally with rotation, including shortening of the spindle in the pole-to pole axis, which resulted in a nearly spherical spindle at rotation. By analyzing large spindles of polyploid C. elegans and a related nematode species, we found that spindle rotation initiated at a defined spherical shape rather than at a defined spindle length. In addition, dynein accumulated on the cortex just before rotation, and microtubules grew from the spindle with plus ends outward during rotation. Dynactin depletion prevented accumulation of dynein on the cortex and prevented spindle rotation independently of effects on spindle shape. These results support a cortical pulling model in which spindle shape might facilitate rotation because a sphere can rotate without deforming the adjacent elastic cytoplasm. We also present evidence that activation of spindle rotation is promoted by dephosphorylation of the basic domain of p150 dynactin.


Development ◽  
2016 ◽  
Vol 143 (19) ◽  
pp. 3604-3614 ◽  
Author(s):  
Nicolas Joly ◽  
Lisa Martino ◽  
Emmanuelle Gigant ◽  
Julien Dumont ◽  
Lionel Pintard

2006 ◽  
Vol 175 (6) ◽  
pp. 881-891 ◽  
Author(s):  
Karen McNally ◽  
Anjon Audhya ◽  
Karen Oegema ◽  
Francis J. McNally

Accurate control of spindle length is a conserved feature of eukaryotic cell division. Lengthening of mitotic spindles contributes to chromosome segregation and cytokinesis during mitosis in animals and fungi. In contrast, spindle shortening may contribute to conservation of egg cytoplasm during female meiosis. Katanin is a microtubule-severing enzyme that is concentrated at mitotic and meiotic spindle poles in animals. We show that inhibition of katanin slows the rate of spindle shortening in nocodazole-treated mammalian fibroblasts and in untreated Caenorhabditis elegans meiotic embryos. Wild-type C. elegans meiotic spindle shortening proceeds through an early katanin-independent phase marked by increasing microtubule density and a second, katanin-dependent phase that occurs after microtubule density stops increasing. In addition, double-mutant analysis indicated that γ-tubulin–dependent nucleation and microtubule severing may provide redundant mechanisms for increasing microtubule number during the early stages of meiotic spindle assembly.


2003 ◽  
Vol 370 (3) ◽  
pp. 1047-1054 ◽  
Author(s):  
Juan CADIÑANOS ◽  
Walter K. SCHMIDT ◽  
Antonio FUEYO ◽  
Ignacio VARELA ◽  
Carlos LÓPEZ-OTÍN ◽  
...  

Post-translational processing of proteins such as the Ras GTPases, which contain a C-terminal CaaX motif (where C stands for cysteine, a for aliphatic and X is one of several amino acids), includes prenylation, proteolytic removal of the C-terminal tripeptide and carboxy-methylation of the isoprenyl-cysteine residue. In the present study, we report the presence of two distinct CaaX-proteolytic activities in membrane extracts from Caenorhabditis elegans, which are sensitive to EDTA and Tos-Phe-CH2Cl (tosylphenylalanylchloromethane; ‘TPCK') respectively. A protein similar to the mammalian and yeast farnesylated-proteins converting enzyme-1 (FACE-1)/Ste24p CaaX metalloprotease, encoded by a hypothetical gene (CeFACE-1/C04F12.10) found in C. elegans chromosome I, probably accounts for the EDTA-sensitive activity. An orthologue of FACE-2/Rce1p, the enzyme responsible for the proteolytic maturation of Ras oncoproteins and other prenylated substrates, probably accounts for the Tos-Phe-CH2Cl-sensitive activity, even though the gene for FACE-2/Rce1 has not been previously identified in this model organism. We have identified a previously overlooked gene in C. elegans chromosome V, which codes for a 266-amino-acid protein (CeFACE-2) with 30% sequence identity to human FACE-2/Rce1. We show that both CeFACE-1 and CeFACE-2 have the ability to promote production of the farnesylated yeast pheromone a-factor in vivo and to cleave a farnesylated peptide in vitro. These results indicate that CeFACE-1 and CeFACE-2 are bona fide CaaX proteases and support the evolutionary conservation of this proteolytic system in eukaryotes.


2016 ◽  
Vol 129 (20) ◽  
pp. e1.2-e1.2
Author(s):  
Nicolas Joly ◽  
Lisa Martino ◽  
Emmanuelle Gigant ◽  
Julien Dumont ◽  
Lionel Pintard

Sign in / Sign up

Export Citation Format

Share Document