scholarly journals Neural tube development depends on notochord-derived Sonic hedgehog released into the sclerotome

2019 ◽  
Author(s):  
Nitza Kahane ◽  
Chaya Kalcheim

AbstractSonic hedgehog (Shh), produced in notochord and floor plate, is necessary both for neural and mesodermal development. To reach the myotome, Shh has to traverse the sclerotome. By loss and gain of Shh function, and floor plate deletions, we report that sclerotomal Shh is also necessary for neural tube development. Reducing the amount of Shh in sclerotome by membrane-tethered hedgehog-interacting protein or by Patched1, but not by dominant active Patched, decreased motoneuron numbers while also compromising myotome differentiation. These effects were a specific and direct consequence of reducing Shh. In addition, grafting notochords in a basal, but not apical location vis-a-vis the tube, profoundly affected motoneuron development, suggesting that initial ligand presentation occurs at the basal side of epithelia corresponding to the sclerotome-neural tube interface.Collectively, our results reveal that the sclerotome is a potential site of a Shh gradient that coordinates development of mesodermal and neural progenitors.Summary statementShh that transits through the sclerotome is presented to the neuroepithelium from its basal aspect to affect motoneuron development.

Development ◽  
1997 ◽  
Vol 124 (13) ◽  
pp. 2537-2552 ◽  
Author(s):  
J. Lee ◽  
K.A. Platt ◽  
P. Censullo ◽  
A. Ruiz i Altaba

The vertebrate zinc finger genes of the Gli family are homologs of the Drosophila gene cubitus interruptus. In frog embryos, Gli1 is expressed transiently in the prospective floor plate during gastrulation and in cells lateral to the midline during late gastrula and neurula stages. In contrast, Gli2 and Gli3 are absent from the neural plate midline with Gli2 expressed widely and Gli3 in a graded fashion with highest levels in lateral regions. In mouse embryos, the three Gli genes show a similar pattern of expression in the neural tube but are coexpressed throughout the early neural plate. Because Gli1 is the only Gli gene expressed in prospective floor plate cells of frog embryos, we have investigated a possible involvement of this gene in ventral neural tube development. Here we show that Shh signaling activates Gli1 transcription and that widespread expression of endogenous frog or human glioma Gli1, but not Gli3, in developing frog embryos results in the ectopic differentiation of floor plate cells and ventral neurons within the neural tube. Floor-plate-inducing ability is retained when cytoplasmic Gli1 proteins are forced into the nucleus or are fused to the VP16 transactivating domain. Thus, our results identify Gli1 as a midline target of Shh and suggest that it mediates the induction of floor plate cells and ventral neurons by Shh acting as a transcriptional regulator.


Development ◽  
2000 ◽  
Vol 127 (2) ◽  
pp. 333-342 ◽  
Author(s):  
S. Pons ◽  
E. Marti

Patterning of the vertebrate neural tube depends on intercellular signals emanating from sources such as the notochord and the floor plate. The secreted protein Sonic hedgehog and the extracellular matrix protein Vitronectin are both expressed in these signalling centres and have both been implicated in the generation of ventral neurons. The proteolytic processing of Sonic hedgehog is fundamental for its signalling properties. This processing generates two secreted peptides with all the inducing activity of Shh residing in the highly conserved 19 kDa amino-terminal peptide (N-Shh). Here we show that Vitronectin is also proteolitically processed in the embryonic chick notochord, floor plate and ventral neural tube and that this processing is spatiotemporally correlated with the generation of motor neurons. The processing of Vitronectin produces two fragments of 54 kDa and 45 kDa, as previously described for Vitronectin isolated from chick yolk. The 45 kDa fragment lacks the heparin-binding domain and the integrin-binding domain, RGD, present in the non-processed Vitronectin glycoprotein. Here we show that N-Shh binds to the three forms of Vitronectin (70, 54 and 45 kDa) isolated from embryonic tissue, although is preferentially associated with the 45 kDa form. Furthermore, in cultures of dissociated neuroepithelial cells, the combined addition of N-Shh and Vitronectin significantly increases the extent of motor neuron differentiation, as compared to the low or absent inducing capabilities of either N-Shh or Vitronectin alone. Thus, we conclude that the differentiation of motor neurons is enhanced by the synergistic action of N-Shh and Vitronectin, and that Vitronectin may be necessary for the proper presentation of the morphogen N-Shh to one of its target cells, the differentiating motor neurons.


Development ◽  
1995 ◽  
Vol 121 (12) ◽  
pp. 4257-4264 ◽  
Author(s):  
M.E. Halpern ◽  
C. Thisse ◽  
R.K. Ho ◽  
B. Thisse ◽  
B. Riggleman ◽  
...  

Zebrafish floating head mutant embryos lack notochord and develop somitic muscle in its place. This may result from incorrect specification of the notochord domain at gastrulation, or from respecification of notochord progenitors to form muscle. In genetic mosaics, floating head acts cell autonomously. Transplanted wild-type cells differentiate into notochord in mutant hosts; however, cells from floating head mutant donors produce muscle rather than notochord in wild-type hosts. Consistent with respecification, markers of axial mesoderm are initially expressed in floating head mutant gastrulas, but expression does not persist. Axial cells also inappropriately express markers of paraxial mesoderm. Thus, single cells in the mutant midline transiently co-express genes that are normally specific to either axial or paraxial mesoderm. Since floating head mutants produce some floor plate in the ventral neural tube, midline mesoderm may also retain early signaling capabilities. Our results suggest that wild-type floating head provides an essential step in maintaining, rather than initiating, development of notochord-forming axial mesoderm.


Development ◽  
2000 ◽  
Vol 127 (18) ◽  
pp. 3889-3897 ◽  
Author(s):  
F. Muller ◽  
S. Albert ◽  
P. Blader ◽  
N. Fischer ◽  
M. Hallonet ◽  
...  

The secreted molecule Sonic hedgehog (Shh) is crucial for floor plate and ventral brain development in amniote embryos. In zebrafish, mutations in cyclops (cyc), a gene that encodes a distinct signal related to the TGF(beta) family member Nodal, result in neural tube defects similar to those of shh null mice. cyc mutant embryos display cyclopia and lack floor plate and ventral brain regions, suggesting a role for Cyc in specification of these structures. cyc mutants express shh in the notochord but lack expression of shh in the ventral brain. Here we show that Cyc signalling can act directly on shh expression in neural tissue. Modulation of the Cyc signalling pathway by constitutive activation or inhibition of Smad2 leads to altered shh expression in zebrafish embryos. Ectopic activation of the shh promoter occurs in response to expression of Cyc signal transducers in the chick neural tube. Furthermore an enhancer of the shh gene, which controls ventral neural tube expression, is responsive to Cyc signal transducers. Our data imply that the Nodal related signal Cyc induces shh expression in the ventral neural tube. Based on the differential responsiveness of shh and other neural tube specific genes to Hedgehog and Cyc signalling, a two-step model for the establishment of the ventral midline of the CNS is proposed.


Development ◽  
2019 ◽  
Vol 146 (17) ◽  
pp. dev176784 ◽  
Author(s):  
Atsuki Yatsuzuka ◽  
Akiko Hori ◽  
Minori Kadoya ◽  
Mami Matsuo-Takasaki ◽  
Toru Kondo ◽  
...  

Development ◽  
1998 ◽  
Vol 125 (14) ◽  
pp. 2533-2543 ◽  
Author(s):  
Q. Ding ◽  
J. Motoyama ◽  
S. Gasca ◽  
R. Mo ◽  
H. Sasaki ◽  
...  

Floor plate cells at the midline of the neural tube are specified by high-level activity of Sonic hedgehog (Shh) secreted by notochord, whereas motor neurons are thought to be specified by a lower level activity of Shh secreted in turn by floor plate cells. In Drosophila, the Gli zinc finger protein Cubitus interruptus functions as a transcription factor activating Hedgehog-responsive genes. We report that the expression of known Shh-responsive genes such as Ptc and Gli1 is downregulated in mutant mice lacking Gli2 function. Gli2 mutants fail to develop a floor plate yet still develop motor neurons, which occupy the ventral midline of the neural tube. Our results imply that Gli2 is required to mediate high level but not low level Shh activity and show that the development of motor neurons can occur in the absence of floor plate induction.


Development ◽  
2000 ◽  
Vol 127 (9) ◽  
pp. 1899-1910
Author(s):  
T. Nomura ◽  
H. Fujisawa

The floor plate plays crucial roles in the specification and differentiation of neurons along the dorsal-ventral (DV) axis of the neural tube. The transplantation of the mesecephalic floor plate (mfp) into the dorsal mesencephalon in chick embryos alters the fate of the mesencephalon adjacent to the transplant from the tectum to the tegmentum, a ventral tissue of the mesencephalon. In this study, to test whether the mfp is involved in the specification of the DV polarity of the tectum and affects the projection patterns of retinal fibers to the tectum along the DV axis, we transplanted quail mfp into the dorsal mesencephalon of chick embryos, and analyzed projection patterns of dorsal and ventral retinal fibers to the tectum. In the embryos with the mfp graft, dorsal retinal fibers grew into the dorsal part of the tectum which is the original target for ventral but not dorsal retinal fibers and formed tight focuses there. In contrast, ventral retinal fibers did not terminate at any part of the tectum. Transplantation of Sonic hedgehog (Shh)-secreting quail fibroblasts into the dorsal mesencephalon also induced the ectopic tegmentum and altered the retinotectal projection along the DV axis, as the mfp graft did. These results suggest that some factors from the mesencephalic floor plate or the tegmentum, or Shh itself, play a crucial role in the establishment of the DV polarity of the tectum and the retinotectal projection map along the DV axis.


Sign in / Sign up

Export Citation Format

Share Document