scholarly journals Microbial Nitrogen Metabolism in Chloraminated Drinking Water Reservoirs

2019 ◽  
Author(s):  
Sarah C Potgieter ◽  
Zihan Dai ◽  
Stefanus N Venter ◽  
Makhosazana Sigudu ◽  
Ameet J Pinto

AbstractNitrification is a common concern in chloraminated drinking water distribution systems. The addition of ammonia promotes the growth of nitrifying organisms, causing the depletion of chloramine residuals and resulting in operational problems for many drinking water utilities. Therefore, a comprehensive understanding of the microbially mediated processes behind nitrogen metabolism together with chemical water quality data, may allow water utilities to better address the undesirable effects caused by nitrification. In this study, a metagenomic approach was applied to characterise the microbial nitrogen metabolism within chloraminated drinking water reservoirs. Samples from two geographically separated but connected chloraminated reservoirs within the same drinking water distribution system (DWDS) were collected within a 2-year sampling campaign. Spatial changes in the nitrogen compounds (ammonium (NH4+), nitrites (NO2−) and nitrates (NO3−)) across the DWDS were observed, where nitrate concentrations increased as the distance from the site of chloramination increased. The observed dominance ofNitrosomonasandNitrospira-like bacteria, together with the changes in the concentration of nitrogen species, suggests that these bacteria play a significant role in contributing to varying stages of nitrification in both reservoirs. Functionally annotated protein sequences were mined for the genes associated with nitrogen metabolism and the community gene catalogue contained mostly genes involved in nitrification, nitrate and nitrite reduction and nitric oxide reduction. Furthermore, based on the construction of Metagenome Assembled Genomes (MAGs), a highly diverse assemblage of bacteria (i.e., predominatelyAlpha- andBetaproteobacteriain this study) was observed among the draft genomes. Specifically, 5 MAGs showed high coverage across all samples including twoNitrosomonas, Nitrospira, Sphingomonasand aRhizobiales-like MAGs. The role of these MAGs in nitrogen metabolism revealed that the fate nitrate may be linked to changes in ammonia concentrations, that is, when ammonia concentrations are low, nitrate may be assimilated back to ammonia for growth. Alternatively, nitrate may be reduced to nitric oxide and potentially used in the regulation of biofilm formation. Therefore, this study provides insight into the genetic network behind microbially mediated nitrogen metabolism and together with the water chemistry data improves our understanding nitrification in chloraminated DWDSs.

mSphere ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Sarah C. Potgieter ◽  
Zihan Dai ◽  
Stephanus N. Venter ◽  
Makhosazana Sigudu ◽  
Ameet J. Pinto

ABSTRACT Ammonia availability due to chloramination can promote the growth of nitrifying organisms, which can deplete chloramine residuals and result in operational problems for drinking water utilities. In this study, we used a metagenomic approach to determine the identity and functional potential of microorganisms involved in nitrogen biotransformation within chloraminated drinking water reservoirs. Spatial changes in the nitrogen species included an increase in nitrate concentrations accompanied by a decrease in ammonium concentrations with increasing distance from the site of chloramination. This nitrifying activity was likely driven by canonical ammonia-oxidizing bacteria (i.e., Nitrosomonas) and nitrite-oxidizing bacteria (i.e., Nitrospira) as well as by complete-ammonia-oxidizing (i.e., comammox) Nitrospira-like bacteria. Functional annotation was used to evaluate genes associated with nitrogen metabolism, and the community gene catalogue contained mostly genes involved in nitrification, nitrate and nitrite reduction, and nitric oxide reduction. Furthermore, we assembled 47 high-quality metagenome-assembled genomes (MAGs) representing a highly diverse assemblage of bacteria. Of these, five MAGs showed high coverage across all samples, which included two Nitrosomonas, Nitrospira, Sphingomonas, and Rhizobiales-like MAGs. Systematic genome-level analyses of these MAGs in relation to nitrogen metabolism suggest that under ammonia-limited conditions, nitrate may be also reduced back to ammonia for assimilation. Alternatively, nitrate may be reduced to nitric oxide and may potentially play a role in regulating biofilm formation. Overall, this study provides insight into the microbial communities and their nitrogen metabolism and, together with the water chemistry data, improves our understanding of nitrogen biotransformation in chloraminated drinking water distribution systems. IMPORTANCE Chloramines are often used as a secondary disinfectant when free chlorine residuals are difficult to maintain. However, chloramination is often associated with the undesirable effect of nitrification, which results in operational problems for many drinking water utilities. The introduction of ammonia during chloramination provides a potential source of nitrogen either through the addition of excess ammonia or through chloramine decay. This promotes the growth of nitrifying microorganisms and provides a nitrogen source (i.e., nitrate) for the growth for other organisms. While the roles of canonical ammonia-oxidizing and nitrite-oxidizing bacteria in chloraminated drinking water systems have been extensively investigated, those studies have largely adopted a targeted gene-centered approach. Further, little is known about the potential long-term cooccurrence of complete-ammonia-oxidizing (i.e., comammox) bacteria and the potential metabolic synergies of nitrifying organisms with their heterotrophic counterparts that are capable of denitrification and nitrogen assimilation. This study leveraged data obtained for genome-resolved metagenomics over a time series to show that while nitrifying bacteria are dominant and likely to play a major role in nitrification, their cooccurrence with heterotrophic organisms suggests that nitric oxide production and nitrate reduction to ammonia may also occur in chloraminated drinking water systems.


2004 ◽  
Vol 49 (9) ◽  
pp. 219-226 ◽  
Author(s):  
P. Tomboulian ◽  
L. Schweitzer ◽  
K. Mullin ◽  
J. Wilson ◽  
D. Khiari

In order to assist drinking water utilities with identifying the possible sources and causes of taste-and-odor conditions associated with materials used in distribution systems, we evaluated information from case studies and a database from the National Sanitation Foundation (NSF), International. This database identified chemicals that had leached from drinking water system components during testing of materials under ANSI/NSF Standard 61, which provides information to water utilities on potential taste-and-odor and health concerns from the use of new materials. The data were arranged to provide a process for locating the potential source of a taste-and-odor event. After a sensory analysis is conducted on the drinking water samples, the descriptor can be matched with categories on the "Drinking Water Taste and Odor Wheel 2000" in order to suggest the candidate material.


2020 ◽  
Vol 41 (S1) ◽  
pp. s255-s255
Author(s):  
Ayodele T. Adesoji ◽  
Adeniyi A. Ogunjobi

Background: Multidrug-resistant bacteria can lead to treatment failure, resulting in infectious diseases being transferred through nonpotable water. Aminoglycosides are an important class of antibiotics that are abused in Nigeria. Few studies have investigated aminoglycoside-modifying genes (AMGs) that are likely responsible for resistance in Nigeria bacteria isolates. Therefore, we aimed to characterize AMGs from isolates in drinking water distribution systems (DWDS) in southwestern Nigeria. Methods: Multidrug-resistant bacteria (n = 181) that had been previously characterized by 16S rDNA sequencing and that were positive for resistance to at least 1 aminoglycoside antibiotic were selected from 6 treated and untreated water distribution systems. Strains were PCR genotyped for 3 AMGs: aph(3)c, ant(3)b and aph(6)-1dd. Results: Of 181 MDR bacteria tested, 69 (38.12%) were positive for at least 1 of the AMGs. The most common was ant(3)c (27.6%), followed by aph(3")c (18.23%). Both aph(3)c and ant(3")b were found in 7.73% of tested isolates, ant(3)b was most commonly found in Alcaligenes spp (50%). Furthermore, aph(3")c was most commonly detected in Proteus spp (50%). Other genera positive for AMGs included Acinetobacter, Aeromonas, Bordetella, Brevundimonas, Chromobacterium, Klebsiella, Leucobacter, Morganella, Pantoae, Proteus, Providencia, Psychrobacter, and Serratia. Conclusions: High occurrence of ant(3)c and aph(3)c among these bacteria call for urgent attention among public health workers because these genes can be easily disseminated to consumers if present on mobile genetic elements like plasmids, integrons, and transposons.Funding: NoneDisclosures: None


2017 ◽  
Vol 3 (1) ◽  
pp. 147-155 ◽  
Author(s):  
Haibo Wang ◽  
Chun Hu ◽  
Lang Yin ◽  
Sujia Zhang ◽  
Lizhong Liu

There is a relationship between biochemical function and chemical composition of corrosion scales, and Fe3O4formation reduced iron release.


Sign in / Sign up

Export Citation Format

Share Document