biochemical function
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 24)

H-INDEX

34
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Gily Schneider-Nachum ◽  
Julia Flynn ◽  
David Mavor ◽  
Celia A Schiffer ◽  
Daniel N A Bolon

Abstract Investigating the relationships between protein function and fitness provides keys for understanding biochemical mechanisms that underly evolution. Mutations with partial fitness defects can delineate the threshold of biochemical function required for viability. We utilized a previous deep mutational scan of HIV-1 protease (PR) to identify variants with 15-45% defects in replication and analyzed the biochemical function of eight variants (L10M, L10S, V32C, V32I, A71V, A71S, Q92I, Q92N). We purified each variant and assessed the efficiency of peptide cleavage for three cut sites (MA-CA, TF-PR, PR-RT) as well as a gel-based analyses of processing of purified Gag. The cutting activity of at least one site was perturbed relative to WT protease for all variants, consistent with cutting activity being a primary determinant of fitness effects. We examined the correlation of fitness defects with cutting activity of different sites. MA-CA showed the weakest correlation (R2=0.02) with fitness, suggesting relatively weak coupling with viral replication. In contrast, cutting of the TF-PR site showed the strongest correlation with fitness (R2=0.53). Cutting at the TF-PR site creates a new PR protein with a free N-terminus that is critical for activity. Our findings indicate that increasing the pool of active PR is rate limiting for viral replication making this an ideal step to target with inhibitors.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Katie A Lien ◽  
Kayla Dinshaw ◽  
Robert J Nichols ◽  
Caleb Cassidy-Amstutz ◽  
Matthew Knight ◽  
...  

Encapsulin nanocompartments are an emerging class of prokaryotic protein-based organelle consisting of an encapsulin protein shell that encloses a protein cargo. Genes encoding nanocompartments are widespread in bacteria and archaea, and recent works have characterized the biochemical function of several cargo enzymes. However, the importance of these organelles to host physiology is poorly understood. Here, we report that the human pathogen Mycobacterium tuberculosis (Mtb) produces a nanocompartment that contains the dye-decolorizing peroxidase DyP. We show that this nanocompartment is important for the ability of Mtb to resist oxidative stress in low pH environments, including during infection of host cells and upon treatment with a clinically relevant antibiotic. Our findings are the first to implicate a nanocompartment in bacterial pathogenesis and reveal a new mechanism that Mtb uses to combat oxidative stress.


Metabolites ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 636
Author(s):  
Artur B. Lourenço ◽  
Marta Artal-Sanz

The mitochondrial prohibitin (PHB) complex, composed of PHB-1 and PHB-2, is an evolutionarily conserved context-dependent modulator of longevity. This extremely intriguing phenotype has been linked to alterations in mitochondrial function and lipid metabolism. The true biochemical function of the mitochondrial PHB complex remains elusive, but it has been shown to affect membrane lipid composition. Recent work, using large-scale biochemical approaches, has highlighted a broad effect of PHB on the C. elegans metabolic network. Collectively, the biochemical data support the notion that PHB modulates, at least partially, worm longevity through the moderation of fat utilisation and energy production via the mitochondrial respiratory chain. Herein, we review, in a systematic manner, recent biochemical insights into the impact of PHB on the C. elegans metabolome.


2021 ◽  
Author(s):  
Jiaqi Fu ◽  
Mowei Zhou ◽  
Marina A Gritsenko ◽  
Ernesto S. Nakayasu ◽  
Lei Song ◽  
...  

The intracellular pathogen Legionella pneumophila delivers more than 330 effectors into host cells by its Dot/Icm secretion system. Those effectors direct the biogenesis of the Legionella-containing vacuole (LCV) that permits its intracellular survival and replication. It has long been documented that the LCV is associated with mitochondria and a number of Dot/Icm effectors have been shown to target to this organelle. Yet, the biochemical function and host cell target of most of these effectors remain unknown. Here, we found that the Dot/Icm substrate Ceg3 (Lpg0080) is a mono-ADP-ribosyltransferase that localizes to the mitochondria in host cells where it attacks ADP/ATP translocases by ADP-ribosylation, and blunts their ADP/ATP exchange activity. The modification occurs on the second arginine residue in the -RRRMMM- element, which is conserved among all known ADP/ATP carriers from different organisms. Our results reveal modulation of host energy metabolism as a virulence mechanism for L. pneumophila.


2021 ◽  
Author(s):  
Jugal Mohapatra ◽  
Kyuto Tashiro ◽  
Ryan L Beckner ◽  
Jorge Sierra ◽  
Jessica A Kilgore ◽  
...  

Serine ADP-ribosylation (ADPr) is a DNA damage-induced post-translational modification catalyzed by the PARP1/2:HPF1 complex. As the list of PARP1/2:HPF1 substrates continues to expand, there is a need for technologies to prepare mono- and poly-ADP-ribosylated proteins for biochemical interrogation. Here we investigate the unique peptide ADPr activities catalyzed by PARP1 in the absence and presence of HPF1. We then exploit these activities to develop a method that facilitates installation of ADP-ribose polymers onto full-length proteins with precise control over chain length and modification site. A series of semi-synthetic ADP-ribosylated histone proteins are prepared which demonstrate that ADPr at H2BS6 or H3S10 converts nucleosomes into robust substrates for the chromatin remodeler ALC1. Importantly, we found ALC1 selectively remodels "activated" substrates within heterogeneous nucleosome populations and that nucleosome serine ADPr is sufficient to stimulate ALC1 activity in nuclear extracts. Our study identifies a biochemical function for nucleosome serine ADPr and describes a method that is broadly applicable to explore the impact that site-specific serine mono- and poly-ADPr have on protein function.


2021 ◽  
Vol 12 ◽  
Author(s):  
Artur B. Lourenço ◽  
María Jesús Rodríguez-Palero ◽  
Mary K. Doherty ◽  
David Cabrerizo Granados ◽  
Blanca Hernando-Rodríguez ◽  
...  

Metabolic disorders are frequently associated with physiological changes that occur during ageing. The mitochondrial prohibitin complex (PHB) is an evolutionary conserved context-dependent modulator of longevity, which has been linked to alterations in lipid metabolism but which biochemical function remains elusive. In this work we aimed at elucidating the molecular mechanism by which depletion of mitochondrial PHB shortens the lifespan of wild type animals while it extends that of insulin signaling receptor (daf-2) mutants. A liquid chromatography coupled with mass spectrometry approach was used to characterize the worm lipidome of wild type and insulin deficient animals upon PHB depletion. Toward a mechanistic interpretation of the insights coming from this analysis, we used a combination of biochemical, microscopic, and lifespan analyses. We show that PHB depletion perturbed glycerophospholipids and glycerolipids pools differently in short- versus long-lived animals. Interestingly, PHB depletion in otherwise wild type animals induced the endoplasmic reticulum (ER) unfolded protein response (UPR), which was mitigated in daf-2 mutants. Moreover, depletion of DNJ-21, which functionally interacts with PHB in mitochondria, mimicked the effect of PHB deficiency on the UPRER and on the lifespan of wild type and insulin signaling deficient mutants. Our work shows that PHB differentially modulates lipid metabolism depending on the worm’s metabolic status and provides evidences for a new link between PHB and ER homeostasis in ageing regulation.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 638
Author(s):  
Ruojing Zhang ◽  
Michael A. Kennedy

The pentapeptide repeat protein (PRP) superfamily, identified in 1998, has grown to nearly 39,000 sequences from over 3300 species. PRPs, recognized as having at least eight contiguous pentapeptide repeats (PRs) of a consensus pentapeptide sequence, adopt a remarkable structure, namely, a right-handed quadrilateral β-helix with four consecutive PRs forming a single β-helix coil. Adjacent coils join together to form a β-helix “tower” stabilized by β-ladders on the tower faces and type I, type II, or type IV β-turns facilitating an approximately −90° redirection of the polypeptide chain joining one coil face to the next. PRPs have been found in all branches of life, but they are predominantly found in cyanobacteria. Cyanobacteria have existed on earth for more than two billion years and are thought to be responsible for oxygenation of the earth’s atmosphere. Filamentous cyanobacteria such as Nostoc sp. strain PCC 7120 may also represent the oldest and simplest multicellular organisms known to undergo cell differentiation on earth. Knowledge of the biochemical function of these PRPs is essential to understanding how ancient cyanobacteria achieved functions critical to early development of life on earth. PRPs are predicted to exist in all cyanobacteria compartments including thylakoid and cell-wall membranes, cytoplasm, and thylakoid periplasmic space. Despite their intriguing structure and importance to understanding ancient cyanobacteria, the biochemical functions of PRPs in cyanobacteria remain almost completely unknown. The precise biochemical function of only a handful of PRPs is currently known from any organisms, and three-dimensional structures of only sixteen PRPs or PRP-containing multidomain proteins from any organism have been reported. In this review, the current knowledge of the structures and functions of PRPs is presented and discussed.


2020 ◽  
Author(s):  
Mark Dayer ◽  
David H MacIver ◽  
Stuart D Rosen

The view that chronic heart failure was exclusively a disease of the heart dominated the cardiovascular literature until relatively recently. However, over the last 40 years it has increasingly come to be seen as a multisystem disease. Aside from changes in the sympathetic and parasympathetic nervous systems and the renin-angiotensin-aldosterone system, adaptations to the lungs, muscles and gastrointestinal tract have been clearly documented. It is clear that the brain and CNS are also affected in patients with heart failure, although this is often under recognized. The purpose of this review is to summarize the changes in the structure and biochemical function of the CNS in patients with chronic heart failure and to discuss their potential importance.


Immunity ◽  
2020 ◽  
Vol 53 (3) ◽  
pp. 672-684.e11 ◽  
Author(s):  
Conor N. Gruber ◽  
Jorg J.A. Calis ◽  
Sofija Buta ◽  
Gilad Evrony ◽  
Jerome C. Martin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document