scholarly journals Laboratory evolution of Escherichia coli enables life based on fluorinated amino acids

2019 ◽  
Author(s):  
Federica Agostini ◽  
Ludwig Sinn ◽  
Daniel Petras ◽  
Christian J. Schipp ◽  
Vladimir Kubyshkin ◽  
...  

AbstractOrganofluorine compounds are toxic to various living beings in different habitats. On the other hand, fluorine incorporation into single proteins via related amino acid analogues has become common practice in protein engineering. Thus, an essential question remains: can fluorinated amino acids generally be used as xeno-nutrients to build up biomass, or do large amounts of fluorine in the cells render them nonviable? To gain information about the effect of long-term exposure of a cellular proteome to fluorinated organic compounds, we constructed an experiment based on bacterial adaptation in artificial fluorinated habitats. We propagated Escherichia coli (E. coli) in the presence of either 4- or 5-fluoroindole as essential precursors for the in situ synthesis of tryptophan (Trp) analogues. We found that full adaptation requires astonishingly few genetic mutations but is accompanied by large rearrangements in regulatory networks, membrane integrity and quality control of protein folding. These findings highlight the cellular mechanisms of the evolutionary adaption process to unnatural amino acids and provide the molecular foundation for novel and innovative bioengineering of microbial strains with potential for biotechnological applications.One Sentence SummaryLaboratory evolution enabled for the first time Escherichia coli to use fluorinated indoles as essential precursors for protein synthesis by introducing few genetic mutations but large rearrangements in regulatory networks, membrane integrity and quality control of protein folding.

2021 ◽  
Vol 9 (3) ◽  
pp. 600
Author(s):  
Jian Xu ◽  
Li Zhou ◽  
Meng Yin ◽  
Zhemin Zhou

The strategy of anaerobic biosynthesis of β-alanine by Escherichia coli (E. coli) has been reported. However, the low energy production under anaerobic condition limited cell growth and then affected the production efficiency of β-alanine. Here, the adaptive laboratory evolution was carried out to improve energy production of E. coli lacking phosphoenolpyruvate carboxylase under anaerobic condition. Five mutants were isolated and analyzed. Sequence analysis showed that most of the consistent genetic mutations among the mutants were related with pyruvate accumulation, indicating that pyruvate accumulation enabled the growth of the lethal parent. It is possible that the accumulated pyruvate provides sufficient precursors for energy generation and CO2 fixing reaction catalyzed by phosphoenolpyruvate carboxykinase. B0016-100BB (B0016-090BB, recE::FRT, mhpF::FRT, ykgF::FRT, mhpB:: mhpB *, mhpD:: mhpD *, rcsA:: rcsA *) was engineered based on the analysis of the genetic mutations among the mutants for the biosynthesis of β-alanine. Along with the recruitment of glycerol as the sole carbon source, 1.07 g/L β-alanine was generated by B0016-200BB (B0016-100BB, aspA::FRT) harboring pET24a-panD-AspDH, which was used for overexpression of two key enzymes in β-alanine fermentation process. Compared with the starting strain, which can hardly generate β-alanine under anaerobic condition, the production efficiency of β-alanine of the engineered cell factory was significantly improved.


2020 ◽  
Vol 16 (7) ◽  
pp. 831-843
Author(s):  
Yuwen Wang ◽  
Shuping Li ◽  
Liuhong Zhang ◽  
Shenglan Qi ◽  
Huida Guan ◽  
...  

Background and Objective: Kang Fu Xin liquid (KFX) is an official preparation made from the ethanol extract product from P. Americana. The present quality control method cannot control the quality of the preparation well. The aim of the present study is to establish a convenient HPLC method for multicomponents determination combined with fingerprint analysis for quality control of KFX. Methods: An HPLC-DAD method with gradient elution and detective wavelength switching program was developed to establish HPLC fingerprints of KFX, and 38 batches of KFX were compared and evaluated by similarity analysis (SA), hierarchical clustering analysis (HCA), and principal component analysis (PCA). Meanwhile, six nucleosides and three amino acids, including uracil, hypoxanthine, uric acid, adenosine, xanthine, inosine, tyrosine, phenylalanine and tryptophan in KFX were determined based on the HPLC fingerprints. Results: An HPLC method assisted with gradient elution and wavelength switching program was established and validated for multicomponents determination combined with fingerprint analysis of KFX. The results demonstrated that the similarity values of the KFX samples were more than 0.845. PCA indicated that peaks 4 (hypoxanthine), 7 (xanthine), 9 (tyrosine), 11, 13 and 17 might be the characteristic contributed components. The nine constituents in KFX, uracil, hypoxanthine, uric acid, adenosine, xanthine, inosine, tyrosine, phenylalanine and tryptophan, showed good regression (R2 > 0.9997) within test ranges and the recoveries of the method for all analytes were in the range from 96.74 to 104.24%. The limits of detections and quantifications for nine constituents in DAD were less than 0.22 and 0.43 μg•mL-1, respectively. Conclusion: The qualitative analysis of chemical fingerprints and the quantitative analysis of multiple indicators provide a powerful and rational way to control the KFX quality for pharmaceutical companies.


1948 ◽  
Vol 174 (2) ◽  
pp. 391-398
Author(s):  
Yutaka. Kobayashi ◽  
Marguerite. Fling ◽  
Sidney W. Fox

Sign in / Sign up

Export Citation Format

Share Document