scholarly journals Enabling Semantic Queries Across Federated Bioinformatics Databases

2019 ◽  
Author(s):  
Ana Claudia Sima ◽  
Tarcisio Mendes de Farias ◽  
Erich Zbinden ◽  
Maria Anisimova ◽  
Manuel Gil ◽  
...  

MotivationData integration promises to be one of the main catalysts in enabling new insights to be drawn from the wealth of biological data available publicly. However, the heterogeneity of the different data sources, both at the syntactic and the semantic level, still poses significant challenges for achieving interoperability among biological databases.ResultsWe introduce an ontology-based federated approach for data integration. We applied this approach to three heterogeneous data stores that span different areas of biological knowledge: 1) Bgee, a gene expression relational database; 2) OMA, a Hierarchical Data Format 5 (HDF5) orthology data store, and 3) UniProtKB, a Resource Description Framework (RDF) store containing protein sequence and functional information. To enable federated queries across these sources, we first defined a new semantic model for gene expression called GenEx. We then show how the relational data in Bgee can be expressed as a virtual RDF graph, instantiating GenEx, through dedicated relational-to-RDF mappings. By applying these mappings, Bgee data are now accessible through a public SPARQL endpoint. Similarly, the materialised RDF data of OMA, expressed in terms of the Orthology ontology, is made available in a public SPARQL endpoint. We identified and formally described intersection points (i.e. virtual links) among the three data sources. These allow performing joint queries across the data stores. Finally, we lay the groundwork to enable nontechnical users to benefit from the integrated data, by providing a natural language template-based search interface.Project URLhttp://biosoda.expasy.org, https://github.com/biosoda/bioquery

Database ◽  
2019 ◽  
Vol 2019 ◽  
Author(s):  
Ana Claudia Sima ◽  
Tarcisio Mendes de Farias ◽  
Erich Zbinden ◽  
Maria Anisimova ◽  
Manuel Gil ◽  
...  

Abstract Motivation: Data integration promises to be one of the main catalysts in enabling new insights to be drawn from the wealth of biological data available publicly. However, the heterogeneity of the different data sources, both at the syntactic and the semantic level, still poses significant challenges for achieving interoperability among biological databases. Results: We introduce an ontology-based federated approach for data integration. We applied this approach to three heterogeneous data stores that span different areas of biological knowledge: (i) Bgee, a gene expression relational database; (ii) Orthologous Matrix (OMA), a Hierarchical Data Format 5 orthology DS; and (iii) UniProtKB, a Resource Description Framework (RDF) store containing protein sequence and functional information. To enable federated queries across these sources, we first defined a new semantic model for gene expression called GenEx. We then show how the relational data in Bgee can be expressed as a virtual RDF graph, instantiating GenEx, through dedicated relational-to-RDF mappings. By applying these mappings, Bgee data are now accessible through a public SPARQL endpoint. Similarly, the materialized RDF data of OMA, expressed in terms of the Orthology ontology, is made available in a public SPARQL endpoint. We identified and formally described intersection points (i.e. virtual links) among the three data sources. These allow performing joint queries across the data stores. Finally, we lay the groundwork to enable nontechnical users to benefit from the integrated data, by providing a natural language template-based search interface.


2014 ◽  
Vol 912-914 ◽  
pp. 1201-1204
Author(s):  
Gang Huang ◽  
Xiu Ying Wu ◽  
Man Yuan

This paper provides an ontology-based distributed heterogeneous data integration framework (ODHDIF). The framework resolves the problem of semantic interoperability between heterogeneous data sources in semantic level. By metadatas specifying the distributed, heterogeneous data and by describing semantic information of data source , having "ontology" as a common semantic model, semantic match is established through ontology mapping between heterogeneous data sources and semantic difference institutions are shielded, so that semantic heterogeneity problem of the heterogeneous data sources can be effectively solved. It provides an effective technology measure for the interior information of enterprises to be shared in time accurately.


2014 ◽  
Vol 530-531 ◽  
pp. 809-812
Author(s):  
Gang Huang ◽  
Xiu Ying Wu ◽  
Man Yuan ◽  
Rui Fang Li

The Oil & Gas industry is moving forward with Integrated Operations (IO). There are different ways to achieve data integration, and ontology-based approaches have drawn much attention. This paper introduces an ontology-based distributed data integration framework (ODDIF). The framework resolves the problem of semantic interoperability between heterogeneous data sources in semantic level. By metadatas specifying the distributed, heterogeneous data and by describing semantic information of data source , having "ontology" as a common semantic model, semantic match is established through ontology mapping between heterogeneous data sources and semantic difference institutions are shielded, so that semantic heterogeneity problem of the heterogeneous data sources can be effectively solved. The proposed method reduces developing difficulty, improves developing efficiency, and enhances the maintainability and expandability of the system.


2016 ◽  
Vol 2 ◽  
pp. e90 ◽  
Author(s):  
Ranko Gacesa ◽  
David J. Barlow ◽  
Paul F. Long

Ascribing function to sequence in the absence of biological data is an ongoing challenge in bioinformatics. Differentiating the toxins of venomous animals from homologues having other physiological functions is particularly problematic as there are no universally accepted methods by which to attribute toxin function using sequence data alone. Bioinformatics tools that do exist are difficult to implement for researchers with little bioinformatics training. Here we announce a machine learning tool called ‘ToxClassifier’ that enables simple and consistent discrimination of toxins from non-toxin sequences with >99% accuracy and compare it to commonly used toxin annotation methods. ‘ToxClassifer’ also reports the best-hit annotation allowing placement of a toxin into the most appropriate toxin protein family, or relates it to a non-toxic protein having the closest homology, giving enhanced curation of existing biological databases and new venomics projects. ‘ToxClassifier’ is available for free, either to download (https://github.com/rgacesa/ToxClassifier) or to use on a web-based server (http://bioserv7.bioinfo.pbf.hr/ToxClassifier/).


2018 ◽  
Author(s):  
Larysse Silva ◽  
José Alex Lima ◽  
Nélio Cacho ◽  
Eiji Adachi ◽  
Frederico Lopes ◽  
...  

A notable characteristic of smart cities is the increase in the amount of available data generated by several devices and computational systems, thus augmenting the challenges related to the development of software that involves the integration of larges volumes of data. In this context, this paper presents a literature review aimed to identify the main strategies used in the development of solutions for data integration, relationship, and representation in smart cities. This study systematically selected and analyzed eleven studies published from 2015 to 2017. The achieved results reveal gaps regarding solutions for the continuous integration of heterogeneous data sources towards supporting application development and decision-making.


2019 ◽  
pp. 254-277 ◽  
Author(s):  
Ying Zhang ◽  
Chaopeng Li ◽  
Na Chen ◽  
Shaowen Liu ◽  
Liming Du ◽  
...  

Since large amount of geospatial data are produced by various sources, geospatial data integration is difficult because of the shortage of semantics. Despite standardised data format and data access protocols, such as Web Feature Service (WFS), can enable end-users with access to heterogeneous data stored in different formats from various sources, it is still time-consuming and ineffective due to the lack of semantics. To solve this problem, a prototype to implement the geospatial data integration is proposed by addressing the following four problems, i.e., geospatial data retrieving, modeling, linking and integrating. We mainly adopt four kinds of geospatial data sources to evaluate the performance of the proposed approach. The experimental results illustrate that the proposed linking method can get high performance in generating the matched candidate record pairs in terms of Reduction Ratio(RR), Pairs Completeness(PC), Pairs Quality(PQ) and F-score. The integrating results denote that each data source can get much Complementary Completeness(CC) and Increased Completeness(IC).


2019 ◽  
pp. 230-253
Author(s):  
Ying Zhang ◽  
Chaopeng Li ◽  
Na Chen ◽  
Shaowen Liu ◽  
Liming Du ◽  
...  

Since large amount of geospatial data are produced by various sources and stored in incompatible formats, geospatial data integration is difficult because of the shortage of semantics. Despite standardised data format and data access protocols, such as Web Feature Service (WFS), can enable end-users with access to heterogeneous data stored in different formats from various sources, it is still time-consuming and ineffective due to the lack of semantics. To solve this problem, a prototype to implement the geospatial data integration is proposed by addressing the following four problems, i.e., geospatial data retrieving, modeling, linking and integrating. First, we provide a uniform integration paradigm for users to retrieve geospatial data. Then, we align the retrieved geospatial data in the modeling process to eliminate heterogeneity with the help of Karma. Our main contribution focuses on addressing the third problem. Previous work has been done by defining a set of semantic rules for performing the linking process. However, the geospatial data has some specific geospatial relationships, which is significant for linking but cannot be solved by the Semantic Web techniques directly. We take advantage of such unique features about geospatial data to implement the linking process. In addition, the previous work will meet a complicated problem when the geospatial data sources are in different languages. In contrast, our proposed linking algorithms are endowed with translation function, which can save the translating cost among all the geospatial sources with different languages. Finally, the geospatial data is integrated by eliminating data redundancy and combining the complementary properties from the linked records. We mainly adopt four kinds of geospatial data sources, namely, OpenStreetMap(OSM), Wikmapia, USGS and EPA, to evaluate the performance of the proposed approach. The experimental results illustrate that the proposed linking method can get high performance in generating the matched candidate record pairs in terms of Reduction Ratio(RR), Pairs Completeness(PC), Pairs Quality(PQ) and F-score. The integrating results denote that each data source can get much Complementary Completeness(CC) and Increased Completeness(IC).


Biotechnology ◽  
2019 ◽  
pp. 265-304
Author(s):  
David Correa Martins Jr. ◽  
Fabricio Martins Lopes ◽  
Shubhra Sankar Ray

The inference of Gene Regulatory Networks (GRNs) is a very challenging problem which has attracted increasing attention since the development of high-throughput sequencing and gene expression measurement technologies. Many models and algorithms have been developed to identify GRNs using mainly gene expression profile as data source. As the gene expression data usually has limited number of samples and inherent noise, the integration of gene expression with several other sources of information can be vital for accurately inferring GRNs. For instance, some prior information about the overall topological structure of the GRN can guide inference techniques toward better results. In addition to gene expression data, recently biological information from heterogeneous data sources have been integrated by GRN inference methods as well. The objective of this chapter is to present an overview of GRN inference models and techniques with focus on incorporation of prior information such as, global and local topological features and integration of several heterogeneous data sources.


Author(s):  
Ying Zhang ◽  
Chaopeng Li ◽  
Na Chen ◽  
Shaowen Liu ◽  
Liming Du ◽  
...  

Since large amount of geospatial data are produced by various sources, geospatial data integration is difficult because of the shortage of semantics. Despite standardised data format and data access protocols, such as Web Feature Service (WFS), can enable end-users with access to heterogeneous data stored in different formats from various sources, it is still time-consuming and ineffective due to the lack of semantics. To solve this problem, a prototype to implement the geospatial data integration is proposed by addressing the following four problems, i.e., geospatial data retrieving, modeling, linking and integrating. We mainly adopt four kinds of geospatial data sources to evaluate the performance of the proposed approach. The experimental results illustrate that the proposed linking method can get high performance in generating the matched candidate record pairs in terms of Reduction Ratio(RR), Pairs Completeness(PC), Pairs Quality(PQ) and F-score. The integrating results denote that each data source can get much Complementary Completeness(CC) and Increased Completeness(IC).


Sign in / Sign up

Export Citation Format

Share Document