scholarly journals Ion channel depolarization increases repulsions between positive S4 charges to drive activation

2019 ◽  
Author(s):  
H. R. Leuchtag

AbstractThe positively charged residues, arginine and lysine, of the S4 segments of voltage-sensitive ion channels repel each other with Coulomb forces inversely proportional to the mean channel dielectric permittivity ε. Dipole moments induced at rest potential in the branched sidechains of leucine, isoleucine and valine lend high values of ε to the channel. High ε keeps electrostatic forces small at rest, leaving the channel in a compact conformation closed to ion conduction. On membrane depolarization beyond threshold, the repulsive forces between positive S4 charges increase greatly on a sharp decrease in ε due to the collapse of induced dipoles, causing an expansion of the S4 segments, which drives the channel into activation. Model calculations based on α helical S4 geometry, neglecting the small number of negative charges, provide estimates of electrostatic energy for different values of open-channel ε and numbers of positive S4 charges. When theShakerK+channel is depolarized, the repulsion energy in each S4 segment increases from about 0.2 kcal/mol to about 120 kJ/mol (30 kcal/mol). The S4 expansions lengthen and widen the pore domain, expanding the hydrogen bonds of its α helices, thus providing sites for permeant ions. Ion percolation via these sites produces the stochastic ion currents observed in activated channels. The model proposed, Channel Activation by Electrostatic Repulsion (CAbER), explains observed features of voltage-sensitive channel behavior and offers predictions that can be tested by experiment.SIGNIFICANCE STATEMENTScience walks on two legs, experiment and theory. Experiment provides the facts that theory seeks to explain; the predictions of a theoretical model are then tested in the laboratory.Rigid adherence to an inadequate model can lead to stagnation of a field.The way in which a protein molecule straddling a lipid membrane in a nerve or muscle fiber responds to a voltage change by allowing certain ions to cross it is currently modeled by simple devices such as gated pores, screws and paddles. Since molecules and everyday objects are worlds apart, these devices don’t provide productive models of the way a voltage-sensitive ion channel is activated when the voltage across the resting membrane is eliminated in a nerve impulse. A change of paradigm is needed.Like all matter, ion channels obey the laws of physics. One such law says that positive charges repel other positive charges. Since each of these ion channels has four “voltage sensors” studded with positive charges, they store repulsion energy in a membrane poised to conduct an impulse. To see how that stored energy is released in activation, we must turn to condensed-state physics. Recent advances in materials called ferroelectric liquid crystals, with structures resembling those of voltage-sensitive ion channels, provide a bridge between physics and biology. This bridge leads to a new model, Channel Activation by Electrostatic Repulsion,Three amino acids scattered throughout the molecules have side chains split at their ends, which makes them highly sensitive to changing electric fields. The calculations that form the core of this report examine the effect of these branched-chain amino acids on the repulsions between the positive charges in the voltage sensors. The numbers tell us that the voltage sensors expand on activation, popping the ion channel into a porous structure through which specific ions are able to cross the membrane and so carry the nerve impulse along.This model may someday enable us to learn more about diseases caused by mutations in voltage-sensitive ion channels. But for now, the ball is in the court of the experimentalists to test whether the predictions of this model are confirmed in the laboratory.

1999 ◽  
Vol 73 (5) ◽  
pp. 4230-4238 ◽  
Author(s):  
S. C. Piller ◽  
G. D. Ewart ◽  
D. A. Jans ◽  
P. W. Gage ◽  
G. B. Cox

ABSTRACT We have previously reported that the accessory protein Vpr from human immunodeficiency virus type 1 forms cation-selective ion channels in planar lipid bilayers and is able to depolarize intact cultured neurons by causing an inward sodium current, resulting in cell death. In this study, we used site-directed mutagenesis and synthetic peptides to identify the structural regions responsible for the above functions. Mutations in the N-terminal region of Vpr were found to affect channel activity, whereas this activity was not affected by mutations in the hydrophobic region of Vpr (amino acids 53 to 71). Analysis of mutants containing changes in the basic C terminus confirmed previous results that this region, although not necessary for ion channel function, was responsible for the observed rectification of wild-type Vpr currents. A peptide comprising the first 40 N-terminal amino acids of Vpr (N40) was found to be sufficient to form ion channels similar to those caused by wild-type Vpr in planar lipid bilayers. Furthermore, N40 was able to cause depolarization of the plasmalemma and cell death in cultured hippocampal neurons with a time course similar to that seen with wild-type Vpr, supporting the idea that this region is responsible for Vpr ion channel function and cytotoxic effects. Since Vpr is found in the serum and cerebrospinal fluids of AIDS patients, these results may have significance for AIDS pathology.


2019 ◽  
Author(s):  
Mladen Barbic

AbstractThe palette of tools for stimulation and regulation of neural activity is continually expanding. One of the new methods being introduced is magnetogenetics, where mechano-sensitive and thermo-sensitive ion channels are genetically engineered to be closely coupled to the iron-storage protein ferritin. Such genetic constructs could provide a powerful new way of non-invasively activating ion channels in-vivo using external magnetic fields that easily penetrate biological tissue. Initial reports that introduced this new technology have sparked a vigorous debate on the plausibility of physical mechanisms of ion channel activation by means of external magnetic fields. I argue that the initial criticisms leveled against magnetogenetics as being physically implausible were possibly based on the overly simplistic and unnecessarily pessimistic assumptions about the magnetic spin configurations of iron in ferritin protein. Additionally, all the possible magnetic-field-based mechanisms of ion channel activation in magnetogenetics might not have been fully considered. I present and propose several new magneto-mechanical and magneto-thermal mechanisms of ion channel activation by iron-loaded ferritin protein that may elucidate and clarify some of the mysteries that presently challenge our understanding of the reported biological experiments. Finally, I present some additional puzzles that will require further theoretical and experimental investigation.


2012 ◽  
Vol 37 (8) ◽  
pp. 648-653 ◽  
Author(s):  
Tamara V. Kozyreva ◽  
Galina M. Khramova ◽  
Ludmila S. Eliseeva

2003 ◽  
Vol 2 (1) ◽  
pp. 181-190 ◽  
Author(s):  
Stephen K. Roberts

ABSTRACT In contrast to animal and plant cells, very little is known of ion channel function in fungal physiology. The life cycle of most fungi depends on the “filamentous” polarized growth of hyphal cells; however, no ion channels have been cloned from filamentous fungi and comparatively few preliminary recordings of ion channel activity have been made. In an attempt to gain an insight into the role of ion channels in fungal hyphal physiology, a homolog of the yeast K+ channel (ScTOK1) was cloned from the filamentous fungus, Neurospora crassa. The patch clamp technique was used to investigate the biophysical properties of the N. crassa K+ channel (NcTOKA) after heterologous expression of NcTOKA in yeast. NcTOKA mediated mainly time-dependent outward whole-cell currents, and the reversal potential of these currents indicated that it conducted K+ efflux. NcTOKA channel gating was sensitive to extracellular K+ such that channel activation was dependent on the reversal potential for K+. However, expression of NcTOKA was able to overcome the K+ auxotrophy of a yeast mutant missing the K+ uptake transporters TRK1 and TRK2, suggesting that NcTOKA also mediated K+ influx. Consistent with this, close inspection of NcTOKA-mediated currents revealed small inward K+ currents at potentials negative of EK. NcTOKA single-channel activity was characterized by rapid flickering between the open and closed states with a unitary conductance of 16 pS. NcTOKA was effectively blocked by extracellular Ca2+, verapamil, quinine, and TEA+ but was insensitive to Cs+, 4-aminopyridine, and glibenclamide. The physiological significance of NcTOKA is discussed in the context of its biophysical properties.


1991 ◽  
Vol 261 (5) ◽  
pp. F808-F814 ◽  
Author(s):  
H. Matsunaga ◽  
N. Yamashita ◽  
Y. Miyajima ◽  
T. Okuda ◽  
H. Chang ◽  
...  

We used the patch-clamp technique to clarify the nature of ion channels in renal mesangial cells in culture. In the cell-attached mode most patches were silent in the absence of agonists. In some patches a 25-pS nonselective channel was observed. This 25-pS cation channel was consistently observed in inside-out patches, and it was activated by intracellular Ca2+. Excised patch experiments also revealed the existence of a 40-pS K+ channel, which was activated by intracellular Ca2+. This 40-pS K+ channel was observed infrequently in the cell-attached mode. The activities of both channels were increased by arginine vasopressin or angiotensin II, resulting from an increase in intracellular Ca2+ concentration.


2015 ◽  
Vol 36 (3) ◽  
pp. 1049-1058 ◽  
Author(s):  
Lena Rubi ◽  
Vaibhavkumar S. Gawali ◽  
Helmut Kubista ◽  
Hannes Todt ◽  
Karlheinz Hilber ◽  
...  

Background/Aims: Dysferlin plays a decisive role in calcium-dependent membrane repair in myocytes. Mutations in the encoding DYSF gene cause a number of myopathies, e.g. limb-girdle muscular dystrophy type 2B (LGMD2B). Besides skeletal muscle degenerative processes, dysferlin deficiency is also associated with cardiac complications. Thus, both LGMD2B patients and dysferlin-deficient mice develop a dilated cardiomyopathy. We and others have recently reported that dystrophin-deficient ventricular cardiomyocytes from mouse models of Duchenne muscular dystrophy show significant abnormalities in voltage-dependent ion channels, which may contribute to the pathophysiology in dystrophic cardiomyopathy. The aim of the present study was to investigate if dysferlin, like dystrophin, is a regulator of cardiac ion channels. Methods and Results: By using the whole cell patch-clamp technique, we compared the properties of voltage-dependent calcium and sodium channels, as well as action potentials in ventricular cardiomyocytes isolated from the hearts of normal and dysferlin-deficient (dysf) mice. In contrast to dystrophin deficiency, the lack of dysferlin did not impair the ion channel properties and left action potential parameters unaltered. In connection with normal ECGs in dysf mice these results suggest that dysferlin deficiency does not perturb cardiac electrophysiology. Conclusion: Our study demonstrates that dysferlin does not regulate cardiac voltage-dependent ion channels, and implies that abnormalities in cardiac ion channels are not a universal characteristic of all muscular dystrophy types.


2020 ◽  
Vol 55 (S3) ◽  
pp. 14-45

Although ion channels are crucial in many physiological processes and constitute an important class of drug targets, much is still unclear about their function and possible malfunctions that lead to diseases. In recent years, computational methods have evolved into important and invaluable approaches for studying ion channels and their functions. This is mainly due to their demanding mechanism of action where a static picture of an ion channel structure is often insufficient to fully understand the underlying mechanism. Therefore, the use of computational methods is as important as chemical-biological based experimental methods for a better understanding of ion channels. This review provides an overview on a variety of computational methods and software specific to the field of ion-channels. Artificial intelligence (or more precisely machine learning) approaches are applied for the sequence-based prediction of ion channel family, or topology of the transmembrane region. In case sufficient data on ion channel modulators is available, these methods can also be applied for quantitative structureactivity relationship (QSAR) analysis. Molecular dynamics (MD) simulations combined with computational molecular design methods such as docking can be used for analysing the function of ion channels including ion conductance, different conformational states, binding sites and ligand interactions, and the influence of mutations on their function. In the absence of a three-dimensional protein structure, homology modelling can be applied to create a model of your ion channel structure of interest. Besides highlighting a wide range of successful applications, we will also provide a basic introduction to the most important computational methods and discuss best practices to get a rough idea of possible applications and risks.


Sign in / Sign up

Export Citation Format

Share Document