scholarly journals The Clp System in Malaria Parasites Degrades Essential Substrates to Regulate Plastid Biogenesis

2019 ◽  
Author(s):  
A. Florentin ◽  
D.R. Stephens ◽  
C.F. Brooks ◽  
R.P. Baptista ◽  
V Muralidharan

AbstractThe human malaria parasite, Plasmodium falciparum, contains an essential plastid called the apicoplast. Most of apicoplast proteins are encoded by the nuclear genome and it is unclear how the plastid proteome is regulated. Here, we study an apicoplast-localized caseinolytic-protease (Clp) system and how it regulates organelle proteostasis. Using null and conditional mutants, we demonstrated that the Clp protease (PfClpP) has robust enzymatic activity that is essential for apicoplast biogenesis. We developed a CRISPR/Cas9 based system to express catalytically-dead PfClpP, which showed that PfClpP oligomerizes as a zymogen and matured via trans-autocatalysis. The expression of a Clp chaperone (PfClpC) mutant led to the discovery of a functional chaperone-protease interaction essential for plastid function. Conditional mutants of the substrate-adaptor (PfClpS) demonstrated its essential function in plastid biogenesis. A combination of multiple affinity purification screens identified the Clp complex composition as well as putative Clp substrates. This comprehensive study reveals the molecular composition and interactions influencing the proteolytic function of the apicoplast Clp system and demonstrates its central role in the biogenesis of the plastid in malaria parasites.

2020 ◽  
Vol 117 (24) ◽  
pp. 13719-13729 ◽  
Author(s):  
Anat Florentin ◽  
Dylon R. Stephens ◽  
Carrie F. Brooks ◽  
Rodrigo P. Baptista ◽  
Vasant Muralidharan

The human malaria parasite,Plasmodium falciparum, contains an essential plastid called the apicoplast. Most apicoplast proteins are encoded by the nuclear genome and it is unclear how the plastid proteome is regulated. Here, we study an apicoplast-localized caseinolytic-protease (Clp) system and how it regulates organelle proteostasis. Using null and conditional mutants, we demonstrate that theP. falciparumClp protease (PfClpP) has robust enzymatic activity that is essential for apicoplast biogenesis. We developed a CRISPR/Cas9-based system to express catalytically deadPfClpP, which showed thatPfClpP oligomerizes as a zymogen and is matured via transautocatalysis. The expression of both wild-type and mutant Clp chaperone (PfClpC) variants revealed a functional chaperone–protease interaction. Conditional mutants of the substrate-adaptor (PfClpS) demonstrated its essential function in plastid biogenesis. A combination of multiple affinity purification screens identified the Clp complex composition as well as putative Clp substrates. This comprehensive study reveals the molecular composition and interactions influencing the proteolytic function of the apicoplast Clp system and demonstrates its central role in the biogenesis of the plastid in malaria parasites.


Parasitology ◽  
2000 ◽  
Vol 121 (2) ◽  
pp. 127-133 ◽  
Author(s):  
T. G. SMITH ◽  
P. LOURENÇO ◽  
R. CARTER ◽  
D. WALLIKER ◽  
L. C. RANFORD-CARTWRIGHT

2005 ◽  
Vol 392 (1) ◽  
pp. 221-229 ◽  
Author(s):  
Keizo Yuasa ◽  
Fumika Mi-Ichi ◽  
Tamaki Kobayashi ◽  
Masaya Yamanouchi ◽  
Jun Kotera ◽  
...  

This is the first report of molecular characterization of a novel cyclic nucleotide PDE (phosphodiesterase), isolated from the human malaria parasite Plasmodium falciparum and designated PfPDE1. PfPDE1 cDNA encodes an 884-amino-acid protein, including six putative transmembrane domains in the N-terminus followed by a catalytic domain. The PfPDE1 gene is a single-copy gene consisting of two exons and a 170 bp intron. PfPDE1 transcripts were abundant in the ring form of the asexual blood stages of the parasite. The C-terminal catalytic domain of PfPDE1, produced in Escherichia coli, specifically hydrolysed cGMP with a Km value of 0.65 μM. Among the PDE inhibitors tested, a PDE5 inhibitor, zaprinast, was the most effective, having an IC50 value of 3.8 μM. The non-specific PDE inhibitors IBMX (3-isobutyl-1-methylxanthine), theophylline and the antimalarial chloroquine had IC50 values of over 100 μM. Membrane fractions prepared from P. falciparum at mixed asexual blood stages showed potent cGMP hydrolytic activity compared with cytosolic fractions. This hydrolytic activity was sensitive to zaprinast with an IC50 value of 4.1 μM, but insensitive to IBMX and theophylline. Furthermore, an in vitro antimalarial activity assay demonstrated that zaprinast inhibited the growth of the asexual blood parasites, with an ED50 value of 35 μM. The impact of cyclic nucleotide signalling on the cellular development of this parasite has previously been discussed. Thus this enzyme is suggested to be a novel potential target for the treatment of the disease malaria.


Sign in / Sign up

Export Citation Format

Share Document